Assessing the potential of exogenous caffeic acid application in boosting wheat (Triticum aestivum L.) crop productivity under salt stress

Caffeic acid (CA) is known as an antioxidant to scavenge reactive oxygen species (ROS), but the underlying mechanism of mediation of plant salt tolerance against various abiotic stresses by caffeic acid is only partially understood. A field experiment (120 days duration) was conducted to investigate...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 11; p. e0259222
Main Authors Mehmood, Hassan, Abbasi, Ghulam Hassan, Jamil, Moazzam, Malik, Zaffar, Ali, Muhammad, Iqbal, Rashid
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 02.11.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Caffeic acid (CA) is known as an antioxidant to scavenge reactive oxygen species (ROS), but the underlying mechanism of mediation of plant salt tolerance against various abiotic stresses by caffeic acid is only partially understood. A field experiment (120 days duration) was conducted to investigate the protective role of caffeic acid under a high saline medium (EC 8.7 dS m-1 and textural class: sandy loam) in two wheat genotypes (FSD -08 and Zincol-16). Two levels of caffeic acid (50 μM and 100 μM) were applied exogenously in combination with the salinity stress and results revealed that salt alleviation is more prominent when caffeic acid was applied at the rate of 100 μM. Under saline conditions, wheat genotypes show poor fresh and dry matter accumulation, chlorophyll contents, relative water contents (RWC), membrane stability index (MSI) and activities of antioxidant enzymes and increased uptake of Na+ ions. However, wheat genotype FSD-08 eminently responded to caffeic acid application as compared to wheat genotype Zincol-16 as demonstrated by higher growth indicators, RWC, MSI, activities of antioxidant enzymes, accumulation of mineral ions in grain along with yield attributes. In addition, caffeic acid also mitigated salt-induced oxidative stress malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents as well as significantly reduced Na+ uptake. It can be concluded that caffeic acid-induced salinity tolerance in wheat is attributed to improved plant water relations, K+ uptake, yield contents and activities of antioxidant stress enzymes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0259222