Identification and characteristics of combined agrometeorological disasters caused by low temperature in a rice growing region in Liaoning Province, China

Owing to climate change, agrometeorological disasters are becoming increasingly complex. Here, we analysed the characteristics of combined agrometeorological disaster (CAD) caused by low temperature in annual rice crops in Liaoning Province, China, from 1961 to 2017. We assessed the repeat occurrenc...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; p. 9968
Main Authors Ji, Ruipeng, Yu, Wenying, Feng, Rui, Wu, Jinwen, Zhang, Yushu
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.05.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Owing to climate change, agrometeorological disasters are becoming increasingly complex. Here, we analysed the characteristics of combined agrometeorological disaster (CAD) caused by low temperature in annual rice crops in Liaoning Province, China, from 1961 to 2017. We assessed the repeat occurrence of natural disasters on rice production. The results showed that (1) there were six possible CAD scenarios in a rice growing season. These included two scenarios with one disaster in two periods (OD-1, OD-2), three scenarios with two different disasters (TD-1, TD-2, TD-3) and one with multiple disasters (MD-1). Since 1961, the overall occurrence of the six CAD scenarios showed a downward trend. Among the six scenarios, TD-1 had the greatest distribution and occurred most frequently; (2) three possible single agrometeorological disaster (SAD) scenarios may occur during a rice growing season, delayed cold damage (SAD-d), frost damage at only one stage (SAD-f), sterile-type cold damage at one stage (SAD-s). Since 1961, the SAD-d frequency decreased, whereas, since the mid-1980s, the SAD-f frequency increased; (3) SAD and CAD frequencies showed downward trends, with CAD declining more than SAD. The CAD geographical range and frequency were smaller than those of SAD. Rice damage in SAD-f and OD-1 scenarios showed no significant trend, but appeared to have slightly increased. The main agrometeorological disasters affecting rice production in Liaoning Province were delayed cold damage, frost damage or both; (4) a comparison of the rice yield reduction rates of years in which CAD or SAD occurred in more than 50% of stations in Liaoning Province revealed that the yield reduction rates associated with the former were greater than those associated with the latter. CAD had more types, and the occurrences and impacts were more complicated, than for SAD. Compared with SAD, the effects of CAD may be magnified in rice crops, leading to reduced yields.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-89227-y