Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes
We report gas and water flow measurements through microfabricated membranes in which aligned carbon nanotubes with diameters of less than 2 nanometers serve as pores. The measured gas flow exceeds predictions of the Knudsen diffusion model by more than an order of magnitude. The measured water flow...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 312; no. 5776; pp. 1034 - 1037 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Association for the Advancement of Science
19.05.2006
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We report gas and water flow measurements through microfabricated membranes in which aligned carbon nanotubes with diameters of less than 2 nanometers serve as pores. The measured gas flow exceeds predictions of the Knudsen diffusion model by more than an order of magnitude. The measured water flow exceeds values calculated from continuum hydrodynamics models by more than three orders of magnitude and is comparable to flow rates extrapolated from molecular dynamics simulations. The gas and water permeabilities of these nanotube-based membranes are several orders of magnitude higher than those of commercial polycarbonate membranes, despite having pore sizes an order of magnitude smaller. These membranes enable fundamental studies of mass transport in confined environments, as well as more energy-efficient nanoscale filtration. |
---|---|
Bibliography: | http://www.scienceonline.org/ ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1126298 |