Resistance to Human Serum of Gonococci in Urethral Exudates is Reduced by Neuraminidase
Gonococci examined directly from urethral exudates are resistant to killing by human serum, but most strains become susceptible on subculture. Previous work with gonococci grown in vitro indicates that resistance in vivo is due to sialylation of gonococcal lipopolysaccharide (LPS) by a host factor,...
Saved in:
Published in | Proceedings of the Royal Society. B, Biological sciences Vol. 241; no. 1300; pp. 3 - 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
The Royal Society
23.07.1990
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Gonococci examined directly from urethral exudates are resistant to killing by human serum, but most strains become susceptible on subculture. Previous work with gonococci grown in vitro indicates that resistance in vivo is due to sialylation of gonococcal lipopolysaccharide (LPS) by a host factor, cytidine 5'- monophospho- N-acetylneuraminic acid (CMP-NANA) or a related compound present in urogenital secretions and blood cells including phagocytes, which exude during inflammation. This sialylation inhibits the reaction between bactericidal IgM in serum and its target LPS sites. Here, we confirm the indication by using gonococci grown in vivo. Crucial to the above conclusions was the marked reduction of CMP-NANA-conferred serum resistance when gonococci were treated with neuraminidase to remove sialyl groups from their LPS. We now show that the serum resistance of gonococci in urethral exudates was reduced by treatment with neuraminidase from more than 95% (calculated in relation to controls incubated with heated serum) to 2-11% according to sample and incubation time. Subculture of the gonococci also reduced resistance to 9-11% but resistance was restored to more than 95% by incubation with CMP-NANA. This work is the culmination of an investigation that underlines the need to identify specific host factors and the virulence determinants they induce in vivo in future studies of pathogenicity. |
---|---|
Bibliography: | ark:/67375/V84-LNVG6QJ5-L istex:C1F04303252B2B566F356BC22974A136F3747273 This text was harvested from a scanned image of the original document using optical character recognition (OCR) software. As such, it may contain errors. Please contact the Royal Society if you find an error you would like to see corrected. Mathematical notations produced through Infty OCR. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0962-8452 1471-2954 |
DOI: | 10.1098/rspb.1990.0056 |