利用融合高度与单目图像特征的支持向量机模型识别杂草

除草是保证农作物高产的必要工作。针对机械化除草和智能喷药中存在的杂草识别问题,以2~5叶苗期玉米及杂草为研究对象,进行了融合高度特征与单目图像特征的杂草识别方法研究。首先从单目图像中提取16个形态特征和2个纹理特征;然后基于双目图像,提出了针对植株的高度特征提取方法,所得高度特征与实际测量值间误差在±12 mm以内;利用max-min ant system算法对形态特征进行优化选择,将形态特征减少到6个,有效减少数据量62.5%,并与纹理和高度特征进行融合;将2~5叶玉米幼苗的可除草期划分为3个阶段,分别构建融合高度特征与单目图像特征的SVM识别模型,并与相应不含高度特征模型进行对比。经测试,...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 15; pp. 165 - 174
Main Author 王璨 李志伟
Format Journal Article
LanguageChinese
Published 山西农业大学工学院,太谷,030801 2016
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.15.023

Cover

Loading…
More Information
Summary:除草是保证农作物高产的必要工作。针对机械化除草和智能喷药中存在的杂草识别问题,以2~5叶苗期玉米及杂草为研究对象,进行了融合高度特征与单目图像特征的杂草识别方法研究。首先从单目图像中提取16个形态特征和2个纹理特征;然后基于双目图像,提出了针对植株的高度特征提取方法,所得高度特征与实际测量值间误差在±12 mm以内;利用max-min ant system算法对形态特征进行优化选择,将形态特征减少到6个,有效减少数据量62.5%,并与纹理和高度特征进行融合;将2~5叶玉米幼苗的可除草期划分为3个阶段,分别构建融合高度特征与单目图像特征的SVM识别模型,并与相应不含高度特征模型进行对比。经测试,3个阶段模型的识别准确率分别为96.67%,100%,98.33%;平均识别准确率达98.33%。不含高度特征模型的识别准确率分别为93.33%,91.67%,95%;平均识别准确率为93.33%。结果表明,融合高度特征与单目图像特征的SVM识别模型优于不含高度特征模型,平均识别准确率提高了5百分点。该方法实现了高准确率的杂草识别,研究结果为农业精确除草的发展提供参考。
Bibliography:11-2047/S
binocular vision; support vector machines; feature extraction; weed recognition; binocular image; feature fusion
Wang Can, Li Zhiwei(College of Engineering, Shanxi Agricultural University, Taigu 030801, China)
The technology of weed recognition based on machine vision becomes the research focus of precision agriculture.In order to realize the precise weeding technology, it is required to recognize weeds and crops rapidly and precisely. In this research, the high accurate recognition method of weed was studied. Maize seedlings of 2 to 5 leaves stage and weed during same stage were used as research object and method of accurate recognition of weed based on SVM recognition model that fusion height feature and image features was studied. We found that maize seedlings were generally higher than the weeds during the same period. This fact could allow us to have a more accurate recognition evidence for the SVM recognition model.In this paper, we conducted accuracy analysis. Binocular vision system was built a
ISSN:1002-6819
DOI:10.11975/j.issn.1002-6819.2016.15.023