基于多特征的打印文件层级分类研究
打印文件鉴别是一种广泛应用于安全领域的取证技术,因此对其检测的准确率和速度均有较高要求。考虑到单个特征的信息不全,基于多特征融合的方法来提高准确率,同时使用基于Ada Boost的SVM级联分类器进行分类判定。研究过程包括数据采集、图像预处理、GMM和LBP特征提取、特征融合、单个SVM分类器分类以及基于Ada Boost的层级SVM分类器分类。通过对4 000张图片集提取GMM和LBP特征,然后进行特征融合,输入分类器分类,结果表明,该方法能够在一定程度上提高鉴别的准确率和速度,具有良好的可扩展性。...
Saved in:
Published in | 电子技术应用 Vol. 42; no. 3; pp. 113 - 115 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
武汉大学电子信息学院,湖北武汉,430072
2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 打印文件鉴别是一种广泛应用于安全领域的取证技术,因此对其检测的准确率和速度均有较高要求。考虑到单个特征的信息不全,基于多特征融合的方法来提高准确率,同时使用基于Ada Boost的SVM级联分类器进行分类判定。研究过程包括数据采集、图像预处理、GMM和LBP特征提取、特征融合、单个SVM分类器分类以及基于Ada Boost的层级SVM分类器分类。通过对4 000张图片集提取GMM和LBP特征,然后进行特征融合,输入分类器分类,结果表明,该方法能够在一定程度上提高鉴别的准确率和速度,具有良好的可扩展性。 |
---|---|
Bibliography: | gaussian mixture model; local binary pattern; feature fusion; cascade classifier; print document identification Zhou Jingjing,Chen Qinghu,Peng Wenhua,Yan Yuchen (School of Electronic Information, Wuhan University, Wuhan 430072, China) 11-2305/TN Printed document identification is a kind of technology which is widely used in the security field. So it needs higher ac-curacy and speed. Considering the information of a single feature is not complete, this paper improves the accuracy based on mul-ti- feature. The research process includes data acquisition, image preprocessing, GMM and LBP feature extraction, feature fusion,SVM classifier and cascade detector. Through extracting the GMM and LBP features from 4 000 image sets, the feature fusion is performed, and the results show that the proposed method can improve the accuracy and speed of the identification in a certain ex-tent. |
ISSN: | 0258-7998 |
DOI: | 10.16157/j.issn.0258-7998.2016.03.032 |