基于二维空间域移动通信统计信道的空时特性

为了减小无线环境中的多径效应,要求提供信道模型多径分量的到达角度(AOA)和到达时延(TOA)。因此产生了几何单反射信道模型(GBSBCMs)的概念,即假定散射体均匀分布在椭圆区域(宏蜂窝)或圆形区域(微蜂窝)。在宏蜂窝和微蜂窝中,假定散射体为椭圆模型(EM)或圆模型(CM)时或许是合理的,但对于一般散射体模型而言,要确保当散射体为其他分布类型的情况下都是有效的,就需要获得信道参数。推导了在一般散射体模型中基站信号的到达角度和到达时延的联合概率密度函数、边缘概率密度函数,它适用于多种蜂窝型,重点研究高斯分布的散射体,最后仿真验证了推导的合理性。...

Full description

Saved in:
Bibliographic Details
Published in电子技术应用 Vol. 42; no. 8; pp. 116 - 120
Main Author 周杰 朱慧娟 袁梅
Format Journal Article
LanguageChinese
Published 日本国立新泻大学工学部电气电子工学科,日本新泻950-2181%南京信息工程大学气象探测与信息处理重点实验室,江苏南京,210044 2016
南京信息工程大学气象探测与信息处理重点实验室,江苏南京210044
Subjects
Online AccessGet full text
ISSN0258-7998
DOI10.16157/j.issn.0258-7998.2016.08.029

Cover

More Information
Summary:为了减小无线环境中的多径效应,要求提供信道模型多径分量的到达角度(AOA)和到达时延(TOA)。因此产生了几何单反射信道模型(GBSBCMs)的概念,即假定散射体均匀分布在椭圆区域(宏蜂窝)或圆形区域(微蜂窝)。在宏蜂窝和微蜂窝中,假定散射体为椭圆模型(EM)或圆模型(CM)时或许是合理的,但对于一般散射体模型而言,要确保当散射体为其他分布类型的情况下都是有效的,就需要获得信道参数。推导了在一般散射体模型中基站信号的到达角度和到达时延的联合概率密度函数、边缘概率密度函数,它适用于多种蜂窝型,重点研究高斯分布的散射体,最后仿真验证了推导的合理性。
Bibliography:In order to reduce the multipath effect in the wireless environment, the angle of arrival( AOA) and the time of arrival( TOA) the multipath component of the channel model are required. Therefore, the concept of the Geometrically- based single-bounce channel models( GBSBCMs) is generated, which assumes that the scattered bodies are uniformly distributed in the elliptical( macrocell) or circular area( microcell). In the macrocell and microcell, it is assumed that the scattering body elliptical model( EM)or circle model( CM) may be reasonable, but for the general scattering model to ensure that when the scatterer for other kinds of distribution are effective, it is necessary to obtain channel parameters. In this paper, the joint probability density function and the edge probability density function of the arrival angle and the arrival time delay of the base station signal in the general scattering model are derived. This paper focuses on the Gaussian distribution of the scattering body, and the simulation result
ISSN:0258-7998
DOI:10.16157/j.issn.0258-7998.2016.08.029