Air pollution exposure and telomere length in highly exposed subjects in Beijing, China: A repeated-measure study
Ambient particulate matter (PM) exposure has been associated with short- and long-term effects on cardiovascular disease (CVD). Telomere length (TL) is a biomarker of CVD risk that is modified by inflammation and oxidative stress, two key pathways for PM effects. Whether PM exposure modifies TL is l...
Saved in:
Published in | Environment international Vol. 48; pp. 71 - 77 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.11.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ambient particulate matter (PM) exposure has been associated with short- and long-term effects on cardiovascular disease (CVD). Telomere length (TL) is a biomarker of CVD risk that is modified by inflammation and oxidative stress, two key pathways for PM effects. Whether PM exposure modifies TL is largely unexplored.
To investigate effects of PM on blood TL in a highly-exposed population.
We measured blood TL in 120 blood samples from truck drivers and 120 blood samples from office workers in Beijing, China. We measured personal PM2.5 and Elemental Carbon (EC, a tracer of traffic particles) using light-weight monitors. Ambient PM10 was obtained from local monitoring stations. We used covariate-adjusted regression models to estimate percent changes in TL per an interquartile-range increase in exposure.
Covariate-adjusted TL was higher in drivers (mean=0.87, 95%CI: 0.74; 1.03) than in office workers (mean=0.79, 95%CI: 0.67; 0.93; p=0.001). In all participants combined, TL increased in association with personal PM2.5 (+5.2%, 95%CI: 1.5; 9.1; p=0.007), personal EC (+4.9%, 95%CI: 1.2; 8.8; p=0.01), and ambient PM10 (+7.7%, 95%CI: 3.7; 11.9; p<0.001) on examination days. In contrast, average ambient PM10 over the 14days before the examinations was significantly associated with shorter TL (−9.9%, 95%CI: −17.6; −1.5; p=0.02).
Short-term exposure to ambient PM is associated with increased blood TL, consistent with TL roles during acute inflammatory responses. Longer exposures may shorten TL as expected after prolonged pro-oxidant exposures. The observed TL alterations may participate in the biological pathways of short- and long-term PM effects.
► We examined effects of PM on blood TL in a highly-exposed population. ► We may be able to observe TL changes undetectable in populations with lower exposure. ► TL changes may be exposure duration-dependent. ► TL alterations may be in the biological pathways of PM-related health effects. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0160-4120 1873-6750 1873-6750 |
DOI: | 10.1016/j.envint.2012.06.020 |