Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas
This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a multi-subject bundle atlas derived from a two-level intra-subject and inter-subject clustering strategy. This atlas is a model of the brain white ma...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 61; no. 4; pp. 1083 - 1099 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
16.07.2012
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a multi-subject bundle atlas derived from a two-level intra-subject and inter-subject clustering strategy. This atlas is a model of the brain white matter organization, computed for a group of subjects, made up of a set of generic fiber bundles that can be detected in most of the population. Each atlas bundle corresponds to several inter-subject clusters manually labeled to account for subdivisions of the underlying pathways often presenting large variability across subjects. An atlas bundle is represented by the multi-subject list of the centroids of all intra-subject clusters in order to get a good sampling of the shape and localization variability. The atlas, composed of 36 known deep white matter bundles and 47 superficial white matter bundles in each hemisphere, was inferred from a first database of 12 brains. It was successfully used to segment the deep white matter bundles in a second database of 20 brains and most of the superficial white matter bundles in 10 subjects of the same database.
[Display omitted]
► We propose an automatic and robust method for fiber bundle segmentation in massive tractography datasets. ► The method is based on a novel HARDI multi-subject human brain fiber bundle atlas, composed of 36 known deep white matter bundles. ► The atlas also contains 47 superficial white matter bundles in each hemisphere, included in a multisubject bundle atlas for the first time. ► The method considers the fiber shape, position and length information in the segmentation, leading to better results than ROI-based approaches. ► Results can be used for population studies where each generic bundle is analyzed separately. |
---|---|
AbstractList | This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a multi-subject bundle atlas derived from a two-level intra-subject and inter-subject clustering strategy. This atlas is a model of the brain white matter organization, computed for a group of subjects, made up of a set of generic fiber bundles that can be detected in most of the population. Each atlas bundle corresponds to several inter-subject clusters manually labeled to account for subdivisions of the underlying pathways often presenting large variability across subjects. An atlas bundle is represented by the multi-subject list of the centroids of all intra-subject clusters in order to get a good sampling of the shape and localization variability. The atlas, composed of 36 known deep white matter bundles and 47 superficial white matter bundles in each hemisphere, was inferred from a first database of 12 brains. It was successfully used to segment the deep white matter bundles in a second database of 20 brains and most of the superficial white matter bundles in 10 subjects of the same database.
[Display omitted]
► We propose an automatic and robust method for fiber bundle segmentation in massive tractography datasets. ► The method is based on a novel HARDI multi-subject human brain fiber bundle atlas, composed of 36 known deep white matter bundles. ► The atlas also contains 47 superficial white matter bundles in each hemisphere, included in a multisubject bundle atlas for the first time. ► The method considers the fiber shape, position and length information in the segmentation, leading to better results than ROI-based approaches. ► Results can be used for population studies where each generic bundle is analyzed separately. This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a multi-subject bundle atlas derived from a two-level intra-subject and inter-subject clustering strategy. This atlas is a model of the brain white matter organization, computed for a group of subjects, made up of a set of generic fiber bundles that can be detected in most of the population. Each atlas bundle corresponds to several inter-subject clusters manually labeled to account for subdivisions of the underlying pathways often presenting large variability across subjects. An atlas bundle is represented by the multi-subject list of the centroids of all intra-subject clusters in order to get a good sampling of the shape and localization variability. The atlas, composed of 36 known deep white matter bundles and 47 superficial white matter bundles in each hemisphere, was inferred from a first database of 12 brains. It was successfully used to segment the deep white matter bundles in a second database of 20 brains and most of the superficial white matter bundles in 10 subjects of the same database.This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a multi-subject bundle atlas derived from a two-level intra-subject and inter-subject clustering strategy. This atlas is a model of the brain white matter organization, computed for a group of subjects, made up of a set of generic fiber bundles that can be detected in most of the population. Each atlas bundle corresponds to several inter-subject clusters manually labeled to account for subdivisions of the underlying pathways often presenting large variability across subjects. An atlas bundle is represented by the multi-subject list of the centroids of all intra-subject clusters in order to get a good sampling of the shape and localization variability. The atlas, composed of 36 known deep white matter bundles and 47 superficial white matter bundles in each hemisphere, was inferred from a first database of 12 brains. It was successfully used to segment the deep white matter bundles in a second database of 20 brains and most of the superficial white matter bundles in 10 subjects of the same database. This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a multi-subject bundle atlas derived from a two-level intra-subject and inter-subject clustering strategy. This atlas is a model of the brain white matter organization, computed for a group of subjects, made up of a set of generic fiber bundles that can be detected in most of the population. Each atlas bundle corresponds to several inter-subject clusters manually labeled to account for subdivisions of the underlying pathways often presenting large variability across subjects. An atlas bundle is represented by the multi-subject list of the centroids of all intra-subject clusters in order to get a good sampling of the shape and localization variability. The atlas, composed of 36 known deep white matter bundles and 47 superficial white matter bundles in each hemisphere, was inferred from a first database of 12 brains. It was successfully used to segment the deep white matter bundles in a second database of 20 brains and most of the superficial white matter bundles in 10 subjects of the same database. |
Author | Houenou, J. Fillard, P. Le Bihan, D. Duclap, D. Poupon, C. Mangin, J.-F. Guevara, P. Marrakchi-Kacem, L. Leboyer, M. |
Author_xml | – sequence: 1 givenname: P. surname: Guevara fullname: Guevara, P. email: pamela.guevara@gmail.com organization: I2BM, CEA, Gif-sur-Yvette, France – sequence: 2 givenname: D. surname: Duclap fullname: Duclap, D. organization: I2BM, CEA, Gif-sur-Yvette, France – sequence: 3 givenname: C. surname: Poupon fullname: Poupon, C. organization: I2BM, CEA, Gif-sur-Yvette, France – sequence: 4 givenname: L. surname: Marrakchi-Kacem fullname: Marrakchi-Kacem, L. organization: I2BM, CEA, Gif-sur-Yvette, France – sequence: 5 givenname: P. surname: Fillard fullname: Fillard, P. organization: I2BM, CEA, Gif-sur-Yvette, France – sequence: 6 givenname: D. surname: Le Bihan fullname: Le Bihan, D. organization: I2BM, CEA, Gif-sur-Yvette, France – sequence: 7 givenname: M. surname: Leboyer fullname: Leboyer, M. organization: AP-HP, University Paris-East, Department of Psychiatry, INSERM, U955 Unit, France – sequence: 8 givenname: J. surname: Houenou fullname: Houenou, J. organization: I2BM, CEA, Gif-sur-Yvette, France – sequence: 9 givenname: J.-F. surname: Mangin fullname: Mangin, J.-F. organization: I2BM, CEA, Gif-sur-Yvette, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22414992$$D View this record in MEDLINE/PubMed https://inria.hal.science/hal-00700800$$DView record in HAL |
BookMark | eNqNkl2PEyEUhidmjfuhf8GQeKMXUw90ZoAbY92oa9LEG70mDJzpUmegAtOk_16a7q7JXjUhgcDDEw7vua4ufPBYVYTCggLtPm4XHucY3KQ3uGBA2QLK4PRFdUVBtrVsObs4rttlLSiVl9V1SlsAkLQRr6pLxhraSMmuqs1qzmHS2RkyuB4j6WdvRyQJNxP6XA6CJ86TSafk9khy1CaHTdS7-wOxOuuEOZE5Ob8hmkzzmF2d5n6LJj-qdB51el29HPSY8M3DfFP9_vb11-1dvf75_cftal2bVrJcd2BbyxreoNS96IeBUQYc-TDQTnQgJFpm5YBScmisFY3mjRQd7bnuJRXN8qb6cPLe61HtYvmheFBBO3W3WqvjHgAHEAB7Wtj3J3YXw98ZU1aTSwbHUXsMc1IUlkXNG8rOQBmIJWuFLOi7Z-g2zNGXohVtoROcCS4K9faBmvsJ7dNTH5MpgDgBJoaUIg5PCAV1bAK1Vf-bQB2bQEEZ_FjXp2dXjTslWdJz4zmCLycBlqT2DqNKxqE3aF0swSob3DmSz88kZnTeGT3-wcN5in8-XOmj |
CitedBy_id | crossref_primary_10_1016_j_jneumeth_2020_108626 crossref_primary_10_1016_j_neuroimage_2016_11_066 crossref_primary_10_1016_j_neulet_2022_136724 crossref_primary_10_3724_SP_J_1089_2022_19221 crossref_primary_10_1016_j_neuroimage_2021_118706 crossref_primary_10_1016_j_nicl_2023_103367 crossref_primary_10_1016_j_compbiomed_2017_01_016 crossref_primary_10_1002_hbm_24579 crossref_primary_10_3389_fnins_2024_1333243 crossref_primary_10_1016_j_cortex_2014_08_022 crossref_primary_10_3389_fninf_2017_00073 crossref_primary_10_1002_acn3_52204 crossref_primary_10_1016_j_neuroimage_2022_119197 crossref_primary_10_1016_j_neuroimage_2023_120362 crossref_primary_10_1016_j_neuroimage_2023_120086 crossref_primary_10_1186_s12938_020_00786_z crossref_primary_10_3389_fnins_2016_00554 crossref_primary_10_3171_2018_11_PEDS18601 crossref_primary_10_1140_epjst_e2018_800072_1 crossref_primary_10_3389_fpain_2022_840328 crossref_primary_10_1007_s12021_023_09636_4 crossref_primary_10_1109_TBME_2015_2391913 crossref_primary_10_3389_fninf_2020_00032 crossref_primary_10_1016_j_neuroimage_2017_07_015 crossref_primary_10_3389_fninf_2014_00087 crossref_primary_10_1093_cercor_bhaa049 crossref_primary_10_1007_s00429_022_02503_z crossref_primary_10_1111_jon_12934 crossref_primary_10_3389_fnins_2022_824069 crossref_primary_10_1007_s12021_016_9316_7 crossref_primary_10_1016_j_neuroimage_2013_04_009 crossref_primary_10_1016_j_neuroimage_2014_04_048 crossref_primary_10_1002_hbm_25697 crossref_primary_10_1016_j_neuroimage_2018_06_019 crossref_primary_10_1016_j_neuroimage_2013_05_055 crossref_primary_10_1007_s00429_021_02382_w crossref_primary_10_1016_j_media_2024_103165 crossref_primary_10_1016_j_neuroimage_2015_10_032 crossref_primary_10_1016_j_neuroimage_2015_05_016 crossref_primary_10_1016_j_neuroimage_2021_118651 crossref_primary_10_1523_JNEUROSCI_0945_20_2020 crossref_primary_10_1016_j_nicl_2016_11_023 crossref_primary_10_1016_j_neuroimage_2014_08_021 crossref_primary_10_1002_hbm_22854 crossref_primary_10_1038_s41380_023_02031_0 crossref_primary_10_1016_j_artmed_2016_09_003 crossref_primary_10_1016_j_media_2023_102968 crossref_primary_10_1016_j_neuroimage_2018_01_006 crossref_primary_10_1016_j_neuroimage_2018_06_027 crossref_primary_10_1186_s13195_017_0288_0 crossref_primary_10_1016_j_neuroimage_2017_06_083 crossref_primary_10_1007_s00429_019_01855_3 crossref_primary_10_1093_cercor_bhab159 crossref_primary_10_1109_TCDS_2020_2968116 crossref_primary_10_1162_imag_a_00353 crossref_primary_10_3389_fnins_2017_00754 crossref_primary_10_1016_j_neubiorev_2017_10_007 crossref_primary_10_3389_fninf_2022_803934 crossref_primary_10_1007_s00429_018_1735_9 crossref_primary_10_1007_s12021_016_9295_8 crossref_primary_10_3389_fninf_2021_727859 crossref_primary_10_1109_TMI_2019_2902073 crossref_primary_10_1186_s12938_021_00909_0 crossref_primary_10_1016_j_media_2016_06_008 crossref_primary_10_1016_j_neuroimage_2016_11_027 crossref_primary_10_1109_TCDS_2021_3094555 crossref_primary_10_1016_j_physa_2018_02_002 crossref_primary_10_1371_journal_pone_0142860 crossref_primary_10_1016_j_neuroimage_2021_118870 crossref_primary_10_1016_S2590_2415_19_30382_4 crossref_primary_10_1371_journal_pone_0133337 crossref_primary_10_1016_j_media_2020_101761 crossref_primary_10_1016_j_neuroimage_2013_04_066 crossref_primary_10_1016_j_neuroimage_2017_10_058 crossref_primary_10_1002_hbm_23448 crossref_primary_10_1002_hbm_23043 crossref_primary_10_1016_j_neuroimage_2022_119550 crossref_primary_10_1002_mp_15495 crossref_primary_10_1016_j_nbas_2023_100067 crossref_primary_10_1371_journal_pone_0083847 crossref_primary_10_3390_a13120316 crossref_primary_10_1016_j_neuroimage_2018_05_044 crossref_primary_10_1016_j_neuroimage_2018_07_039 crossref_primary_10_3389_fninf_2022_777853 crossref_primary_10_1038_s41598_020_74054_4 crossref_primary_10_1038_s41598_024_69772_y crossref_primary_10_3389_fnins_2024_1396518 crossref_primary_10_1016_j_media_2023_102759 crossref_primary_10_1111_jon_12854 crossref_primary_10_1007_s00429_020_02129_z crossref_primary_10_1016_j_schres_2014_09_007 crossref_primary_10_1016_j_neuroimage_2019_05_051 crossref_primary_10_1016_j_jad_2016_04_038 crossref_primary_10_1016_j_neuroimage_2020_116703 crossref_primary_10_7887_jcns_32_474 crossref_primary_10_1016_j_neuroimage_2020_117402 crossref_primary_10_1016_j_media_2018_02_008 crossref_primary_10_1016_j_neuroimage_2020_116673 crossref_primary_10_1111_acps_12579 crossref_primary_10_1016_j_neuroimage_2021_118451 crossref_primary_10_1007_s12021_020_09497_1 crossref_primary_10_1007_s12021_022_09593_4 crossref_primary_10_3171_2019_4_PEDS1994 crossref_primary_10_1016_j_neuroimage_2020_117070 crossref_primary_10_1093_ons_opx177 crossref_primary_10_1016_j_neuroimage_2018_05_027 crossref_primary_10_3389_fnins_2024_1394681 crossref_primary_10_1016_j_neuroimage_2020_117513 crossref_primary_10_1016_j_neuroimage_2021_118502 crossref_primary_10_1016_j_patcog_2019_06_002 crossref_primary_10_1016_j_neuroscience_2013_12_044 |
Cites_doi | 10.1002/mrm.21277 10.1006/nimg.2002.1136 10.1016/j.neuroimage.2009.08.017 10.1016/j.neuroimage.2010.07.050 10.1002/jmri.1076 10.1109/TMI.2007.906785 10.1016/j.neuroimage.2010.10.028 10.1016/j.neuroimage.2010.03.076 10.1109/TMI.2008.2004424 10.1002/mrm.10308 10.1016/j.neuroimage.2010.07.038 10.1093/cercor/bhh055 10.1016/j.neuroimage.2008.07.009 10.1016/j.neuroimage.2008.10.040 10.1016/j.neuroimage.2006.02.024 10.1002/ana.20319 10.1002/nbm.781 10.1002/nbm.1940080707 10.1016/j.neuroimage.2007.02.016 10.1016/j.cortex.2008.05.004 10.1016/j.neuroimage.2008.12.023 10.1016/j.neuroimage.2010.05.049 10.1016/j.neuroimage.2009.04.057 10.1109/TVCG.2008.52 10.1007/11505730_5 10.1016/j.neuroimage.2010.01.004 10.1016/S1361-8415(03)00031-8 10.1016/j.neuroimage.2007.06.041 10.1109/TMI.2011.2108665 10.1016/j.neuroimage.2009.01.002 10.1016/j.neuroimage.2007.02.049 10.1073/pnas.0702116104 10.1016/j.neuroimage.2008.01.013 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. Copyright © 2012 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jul 16, 2012 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2012 Elsevier Inc. – notice: Copyright © 2012 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jul 16, 2012 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 1XC |
DOI | 10.1016/j.neuroimage.2012.02.071 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Biological science database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 1099 |
ExternalDocumentID | oai_HAL_hal_00700800v1 3245014851 22414992 10_1016_j_neuroimage_2012_02_071 S105381191200256X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 1XC UMC |
ID | FETCH-LOGICAL-c592t-60d5d2474e9ab8bff21207e7ff1686089ed2d9fe99704dd84a749861b7ab91843 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri May 09 12:25:10 EDT 2025 Fri Jul 11 11:39:19 EDT 2025 Thu Jul 10 23:40:39 EDT 2025 Wed Aug 13 09:39:29 EDT 2025 Thu Apr 03 07:09:23 EDT 2025 Thu Apr 24 22:57:57 EDT 2025 Tue Jul 01 02:14:46 EDT 2025 Fri Feb 23 02:36:05 EST 2024 Tue Aug 26 16:33:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Tractography segmentation Diffusion MRI White matter tracts Fiber clustering Bundle atlas |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c592t-60d5d2474e9ab8bff21207e7ff1686089ed2d9fe99704dd84a749861b7ab91843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ORCID | 0000-0001-5473-3697 |
PMID | 22414992 |
PQID | 1506872878 |
PQPubID | 2031077 |
PageCount | 17 |
ParticipantIDs | hal_primary_oai_HAL_hal_00700800v1 proquest_miscellaneous_1038617412 proquest_miscellaneous_1020832589 proquest_journals_1506872878 pubmed_primary_22414992 crossref_primary_10_1016_j_neuroimage_2012_02_071 crossref_citationtrail_10_1016_j_neuroimage_2012_02_071 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_02_071 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_02_071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-16 |
PublicationDateYYYYMMDD | 2012-07-16 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Basser, Pierpaoli (bb0010) 1995; 8 Marrakchi-Kacem, Poupon, Jouvent, Rekik, Mangin, Poupon (bb0245) 2010 Zhang, Zhang, Oishi, Faria, Jiang, Li, Akhter, Rosa-Neto, Pike, Evans, Toga, Woods, Mazziotta, Miller, van Zijl, Mori (bb0215) 2010; 52 Catani, Howard, Pajevic, Jones (bb0030) 2002; 17 Catani, Jones, ffytche (bb0035) 2005; 57 O'Donnell, Westin (bb0130) 2007; 26 Cachia, Mangin, Rivière, Papadopoulos-Orfanos, Kherif, Bloch (bb0020) 2003; 7 Mori, Wakana, van Zijl, Nagae-Poetscher (bb0125) 2005 Yushkevich, Zhang, Simon, Gee (bb0205) 2008; 41 Guevara, Poupon, Rivière, Cointepas, Marrakchi, Descoteaux, Fillard, Thirion, Mangin (bb0235) 2010 Vercauteren, Pennec, Perchant, Ayache (bb0180) 2009; 45 Descoteaux, Angelino, Fitzgibbons, Deriche (bb0055) 2007; 58 Wassermann, Bloy, Kanterakis, Verma, Deriche (bb0200) 2010; 51 Maddah, Mewes, Haker, Grimson, Warfield (bb0240) 2005 Catani, Allin, Husain, Pugliese, Mesulam, Murray, Jones (bb0025) 2007; 104 O'Donnell, Kubicki, Shenton, Dreusicke, Grimson, Westin (bb0135) 2006; 27 Reese, Heid, Weisskoff, Wedeen (bb0165) 2003; 49 Zhang, Correia, Laidlaw (bb0210) 2008; 14 Li, Xue, Guo, Liu, Hunter, Wong (bb0095) 2010; 49 Tournier, Calamante, Connelly (bb0175) 2007; 35 Mori, van Zijl (bb0120) 2002; 15 Auzias, Colliot, Glaunes, Perrot, Mangin, Trouve, Baillet (bb0005) 2011; 30 Ceritoglu, Oishi, Li, Chou, Younes, Albert, Lyketsos, van Zijl, Miller, Mori (bb0045) 2009; 47 Catani, Thiebaut de Schotten (bb0040) 2008; 44 Descoteaux, Wiest-Daesslé, Prima, Barillot, Deriche (bb0225) 2008 Oishi, Faria, Jiang, Li, Akhter, Zhang, Hsu, Miller, van Zijl, Albert, Lyketsos, Woods, Toga, Pike, Rosa-Neto, Evans, Mazziotta, Mori (bb0145) 2009; 46 Marrakchi-Kacem, Poupon, Mangin, Poupon (bb0250) 2010 Guevara, Poupon, Riviére, Cointepas, Descoteaux, Thirion, Mangin (bb0075) 2011; 54 Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub, Hua, Zhang, Jiang, Dubey, Blitz, van Zijl, Mori (bb0190) 2007; 36 Wang, Grimson, Westin (bb0195) 2011; 54 O'Donnell, Westin, Golby (bb0140) 2009; 45 Oishi, Zilles, Amunts, Faria, Jiang, Li, Akhter, Hua, Woods, Toga, Pike, Rosa-Neto, Evans, Zhang, Huang, Miller, van Zijl, Mazziotta, Mori (bb0150) 2008; 43 Büchel, Raedler, Sommer, Sach, Weiller, Koch (bb0015) 2004; 14 Guevara, Duclap, Marrakchi-Kacem, Rivière, Cointepas, Poupon, Mangin (bb0230) 2011 Corouge, Gouttard, Gerig (bb0220) 2004; vol. 1 Le Bihan, Mangin, Poupon, Clark, Pappata, Molko, Chabriat (bb0090) 2001; 13 Perrin, Poupon, Cointepas, Rieul, Golestani, Pallier, Rivière, Constantinesco, Le Bihan, Mangin (bb0155) 2005; 19 Smith, Jenkinson, Johansen-Berg, Rueckert, Nichols, Mackay, Watkins, Ciccarelli, Cader, Matthews, Behrens (bb0170) 2006; 31 Poupon, Poupon, Allirol (bb0255) 2006 Visser, Nijhuis, Buitelaar, Zwiers (bb0185) 2011; 54 Lawes, Barrick, Murugam, Spierings, Evans, Song, Clark (bb0085) 2008; 39 Lyu, Seong, Shin (bb0100) 2010; 52 Descoteaux, Deriche, Knösche, Anwander (bb0060) 2009; 28 Oishi (10.1016/j.neuroimage.2012.02.071_bb0145) 2009; 46 Wakana (10.1016/j.neuroimage.2012.02.071_bb0190) 2007; 36 Le Bihan (10.1016/j.neuroimage.2012.02.071_bb0090) 2001; 13 Lawes (10.1016/j.neuroimage.2012.02.071_bb0085) 2008; 39 Visser (10.1016/j.neuroimage.2012.02.071_bb0185) 2011; 54 Yushkevich (10.1016/j.neuroimage.2012.02.071_bb0205) 2008; 41 Catani (10.1016/j.neuroimage.2012.02.071_bb0030) 2002; 17 O'Donnell (10.1016/j.neuroimage.2012.02.071_bb0130) 2007; 26 Catani (10.1016/j.neuroimage.2012.02.071_bb0040) 2008; 44 Büchel (10.1016/j.neuroimage.2012.02.071_bb0015) 2004; 14 Tournier (10.1016/j.neuroimage.2012.02.071_bb0175) 2007; 35 O'Donnell (10.1016/j.neuroimage.2012.02.071_bb0140) 2009; 45 Marrakchi-Kacem (10.1016/j.neuroimage.2012.02.071_bb0250) 2010 Smith (10.1016/j.neuroimage.2012.02.071_bb0170) 2006; 31 Mori (10.1016/j.neuroimage.2012.02.071_bb0120) 2002; 15 Auzias (10.1016/j.neuroimage.2012.02.071_bb0005) 2011; 30 Guevara (10.1016/j.neuroimage.2012.02.071_bb0230) 2011 Mori (10.1016/j.neuroimage.2012.02.071_bb0125) 2005 Wang (10.1016/j.neuroimage.2012.02.071_bb0195) 2011; 54 Zhang (10.1016/j.neuroimage.2012.02.071_bb0210) 2008; 14 Guevara (10.1016/j.neuroimage.2012.02.071_bb0235) 2010 Ceritoglu (10.1016/j.neuroimage.2012.02.071_bb0045) 2009; 47 Descoteaux (10.1016/j.neuroimage.2012.02.071_bb0055) 2007; 58 O'Donnell (10.1016/j.neuroimage.2012.02.071_bb0135) 2006; 27 Zhang (10.1016/j.neuroimage.2012.02.071_bb0215) 2010; 52 Li (10.1016/j.neuroimage.2012.02.071_bb0095) 2010; 49 Corouge (10.1016/j.neuroimage.2012.02.071_bb0220) 2004; vol. 1 Oishi (10.1016/j.neuroimage.2012.02.071_bb0150) 2008; 43 Catani (10.1016/j.neuroimage.2012.02.071_bb0035) 2005; 57 Descoteaux (10.1016/j.neuroimage.2012.02.071_bb0225) 2008 Marrakchi-Kacem (10.1016/j.neuroimage.2012.02.071_bb0245) 2010 Wassermann (10.1016/j.neuroimage.2012.02.071_bb0200) 2010; 51 Guevara (10.1016/j.neuroimage.2012.02.071_bb0075) 2011; 54 Poupon (10.1016/j.neuroimage.2012.02.071_bb0255) 2006 Vercauteren (10.1016/j.neuroimage.2012.02.071_bb0180) 2009; 45 Catani (10.1016/j.neuroimage.2012.02.071_bb0025) 2007; 104 Lyu (10.1016/j.neuroimage.2012.02.071_bb0100) 2010; 52 Perrin (10.1016/j.neuroimage.2012.02.071_bb0155) 2005; 19 Maddah (10.1016/j.neuroimage.2012.02.071_bb0240) 2005 Basser (10.1016/j.neuroimage.2012.02.071_bb0010) 1995; 8 Cachia (10.1016/j.neuroimage.2012.02.071_bb0020) 2003; 7 Descoteaux (10.1016/j.neuroimage.2012.02.071_bb0060) 2009; 28 Reese (10.1016/j.neuroimage.2012.02.071_bb0165) 2003; 49 |
References_xml | – volume: 35 start-page: 1459 year: 2007 end-page: 1472 ident: bb0175 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: NeuroImage – volume: 51 start-page: 228 year: 2010 end-page: 241 ident: bb0200 article-title: Unsupervised white matter fiber clustering and tract probability map generation: applications of a Gaussian process framework for white matter fibers publication-title: NeuroImage – volume: 44 start-page: 1105 year: 2008 end-page: 1132 ident: bb0040 article-title: A diffusion tensor imaging tractography atlas for virtual publication-title: Cortex – volume: 104 start-page: 17163 year: 2007 end-page: 17168 ident: bb0025 article-title: Symmetries in human brain language pathways correlate with verbal recall publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 8 start-page: 333 year: 1995 end-page: 344 ident: bb0010 article-title: Inferring microstructural features and the physiological state of tissues from diffusion-weighted images publication-title: NMR Biomed. – volume: 49 start-page: 1249 year: 2010 end-page: 1258 ident: bb0095 article-title: A hybrid approach to automatic clustering of white matter fibers publication-title: NeuroImage – year: 2011 ident: bb0230 article-title: Accurate tractography propagation mask using T1-weighted data rather than FA publication-title: ISMRM – volume: 15 start-page: 468 year: 2002 end-page: 480 ident: bb0120 article-title: Fiber tracking: principles and strategies publication-title: NMR Biomed. – volume: 52 start-page: 1289 year: 2010 end-page: 1301 ident: bb0215 article-title: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy publication-title: NeuroImage – volume: 7 start-page: 403 year: 2003 end-page: 416 ident: bb0020 article-title: A generic framework for parcellation of the cortical surface into gyri using geodesic Voronoï diagrams publication-title: Med. Image Anal. – volume: 27 start-page: 1032 year: 2006 end-page: 1036 ident: bb0135 article-title: A method for clustering white matter fiber tracts publication-title: AJNR Am J Neuroradiol – volume: 54 start-page: 290 year: 2011 end-page: 302 ident: bb0195 article-title: Tractography segmentation using a hierarchical dirichlet processes mixture model publication-title: NeuroImage – volume: 57 start-page: 8 year: 2005 end-page: 16 ident: bb0035 article-title: Perisylvian language networks of the human brain publication-title: Ann. Neurol. – volume: 19 start-page: 52 year: 2005 end-page: 63 ident: bb0155 article-title: Fiber tracking in q-ball fields using regularized particle trajectories publication-title: Inf Process Med Imaging – volume: 31 start-page: 1487 year: 2006 end-page: 1505 ident: bb0170 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: NeuroImage – volume: vol. 1 start-page: 344 year: 2004 end-page: 347 ident: bb0220 article-title: Towards a shape model of white matter fiber bundles using diffusion tensor MRI publication-title: ISBI 2004 – volume: 49 start-page: 177 year: 2003 end-page: 182 ident: bb0165 article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo publication-title: Magn. Reson. Med. – volume: 36 start-page: 630 year: 2007 end-page: 644 ident: bb0190 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: NeuroImage – volume: 28 start-page: 269 year: 2009 end-page: 286 ident: bb0060 article-title: Deterministic and probabilistic tractography based on complex fibre orientation distributions publication-title: IEEE Trans. Med. Imaging – start-page: 122 year: 2008 end-page: 130 ident: bb0225 article-title: Impact of rician adapted non-local means filtering on HARDI publication-title: MICCAI 2008. Vol. LNCS 5762 – year: 2010 ident: bb0245 article-title: Robust automatic segmentation of ventricles: application to a genetic small vessel disease, cadasil publication-title: HBM 2010. Barcelona, Spain – year: 2006 ident: bb0255 article-title: NMR: a free database dedicated to the anatomofunctional study of the human brain connectivity publication-title: HBM. Florence, Italy – volume: 39 start-page: 62 year: 2008 end-page: 79 ident: bb0085 article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection publication-title: NeuroImage – volume: 43 start-page: 447 year: 2008 end-page: 457 ident: bb0150 article-title: Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter publication-title: NeuroImage – volume: 52 start-page: 142 year: 2010 end-page: 157 ident: bb0100 article-title: Spectral-based automatic labeling and refining of human cortical sulcal curves using expert-provided examples publication-title: NeuroImage – volume: 26 start-page: 1562 year: 2007 end-page: 1575 ident: bb0130 article-title: Automatic tractography segmentation using a high-dimensional white matter atlas publication-title: IEEE Trans. Med. Imaging – volume: 54 start-page: 303 year: 2011 end-page: 312 ident: bb0185 article-title: Partition-based mass clustering of tractography streamlines publication-title: NeuroImage – year: 2005 ident: bb0125 article-title: MRI Atlas of Human White Matter – volume: 17 start-page: 77 year: 2002 end-page: 94 ident: bb0030 article-title: Virtual publication-title: NeuroImage – volume: 45 start-page: S61 year: 2009 end-page: S72 ident: bb0180 article-title: Diffeomorphic demons: efficient non-parametric image registration publication-title: NeuroImage – volume: 14 start-page: 945 year: 2004 end-page: 951 ident: bb0015 article-title: White matter asymmetry in the human brain: a diffusion tensor MRI study publication-title: Cereb Cortex – start-page: 61 year: 2010 end-page: 64 ident: bb0250 article-title: Multi-contrast deep nuclei segmentation using a probabilistic atlas publication-title: ISBI 2010 – volume: 30 start-page: 1214 year: 2011 end-page: 1227 ident: bb0005 article-title: Diffeomorphic brain registration under exhaustive sulcal constraints publication-title: IEEE Trans. Med. Imaging – start-page: 188 year: 2005 end-page: 195 ident: bb0240 article-title: Automated atlas-based clustering of white matter fiber tracts from DTMRI publication-title: MICCAI 2005, LNCS 3749 – volume: 47 start-page: 618 year: 2009 end-page: 627 ident: bb0045 article-title: Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging publication-title: NeuroImage – volume: 13 start-page: 534 year: 2001 end-page: 546 ident: bb0090 article-title: Diffusion tensor imaging: concepts and applications publication-title: J. Magn. Reson. Imaging – start-page: 550 year: 2010 end-page: 557 ident: bb0235 article-title: Inference of a hardi fiber bundle atlas using a two-level clustering strategy publication-title: MICCAI 2010. Vol. LNCS 6361 – volume: 54 start-page: 1975 year: 2011 end-page: 1993 ident: bb0075 article-title: Robust clustering of massive tractography datasets publication-title: NeuroImage – volume: 14 start-page: 1044 year: 2008 end-page: 1053 ident: bb0210 article-title: Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber-clustering method publication-title: IEEE Trans. Vis. Comput. Graph. – volume: 46 start-page: 486 year: 2009 end-page: 499 ident: bb0145 article-title: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer's disease participants publication-title: NeuroImage – volume: 58 start-page: 497 year: 2007 end-page: 510 ident: bb0055 article-title: Regularized, fast and robust analytical q-ball imaging publication-title: Magn. Reson. Med. – volume: 45 start-page: 832 year: 2009 end-page: 844 ident: bb0140 article-title: Tract-based morphometry for white matter group analysis publication-title: NeuroImage – volume: 41 start-page: 448 year: 2008 end-page: 461 ident: bb0205 article-title: Structure-specific statistical mapping of white matter tracts publication-title: NeuroImage – volume: 58 start-page: 497 year: 2007 ident: 10.1016/j.neuroimage.2012.02.071_bb0055 article-title: Regularized, fast and robust analytical q-ball imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21277 – start-page: 61 year: 2010 ident: 10.1016/j.neuroimage.2012.02.071_bb0250 article-title: Multi-contrast deep nuclei segmentation using a probabilistic atlas – volume: 17 start-page: 77 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2012.02.071_bb0030 article-title: Virtual in vivo interactive dissection of white matter fasciculi in the human brain publication-title: NeuroImage doi: 10.1006/nimg.2002.1136 – volume: 49 start-page: 1249 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2012.02.071_bb0095 article-title: A hybrid approach to automatic clustering of white matter fibers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.08.017 – start-page: 188 year: 2005 ident: 10.1016/j.neuroimage.2012.02.071_bb0240 article-title: Automated atlas-based clustering of white matter fiber tracts from DTMRI – volume: 54 start-page: 290 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2012.02.071_bb0195 article-title: Tractography segmentation using a hierarchical dirichlet processes mixture model publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.050 – volume: 13 start-page: 534 issue: 4 year: 2001 ident: 10.1016/j.neuroimage.2012.02.071_bb0090 article-title: Diffusion tensor imaging: concepts and applications publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.1076 – volume: 26 start-page: 1562 issue: 11 year: 2007 ident: 10.1016/j.neuroimage.2012.02.071_bb0130 article-title: Automatic tractography segmentation using a high-dimensional white matter atlas publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.906785 – year: 2011 ident: 10.1016/j.neuroimage.2012.02.071_bb0230 article-title: Accurate tractography propagation mask using T1-weighted data rather than FA – volume: 54 start-page: 1975 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2012.02.071_bb0075 article-title: Robust clustering of massive tractography datasets publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.10.028 – volume: vol. 1 start-page: 344 year: 2004 ident: 10.1016/j.neuroimage.2012.02.071_bb0220 article-title: Towards a shape model of white matter fiber bundles using diffusion tensor MRI – volume: 52 start-page: 142 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2012.02.071_bb0100 article-title: Spectral-based automatic labeling and refining of human cortical sulcal curves using expert-provided examples publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.076 – volume: 28 start-page: 269 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2012.02.071_bb0060 article-title: Deterministic and probabilistic tractography based on complex fibre orientation distributions publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2008.2004424 – volume: 49 start-page: 177 issue: 1 year: 2003 ident: 10.1016/j.neuroimage.2012.02.071_bb0165 article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10308 – volume: 54 start-page: 303 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2012.02.071_bb0185 article-title: Partition-based mass clustering of tractography streamlines publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.038 – year: 2006 ident: 10.1016/j.neuroimage.2012.02.071_bb0255 article-title: NMR: a free database dedicated to the anatomofunctional study of the human brain connectivity – volume: 14 start-page: 945 issue: 9 year: 2004 ident: 10.1016/j.neuroimage.2012.02.071_bb0015 article-title: White matter asymmetry in the human brain: a diffusion tensor MRI study publication-title: Cereb Cortex doi: 10.1093/cercor/bhh055 – volume: 43 start-page: 447 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2012.02.071_bb0150 article-title: Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.07.009 – volume: 45 start-page: S61 issue: 1 Suppl year: 2009 ident: 10.1016/j.neuroimage.2012.02.071_bb0180 article-title: Diffeomorphic demons: efficient non-parametric image registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.040 – volume: 31 start-page: 1487 issue: 4 year: 2006 ident: 10.1016/j.neuroimage.2012.02.071_bb0170 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.02.024 – volume: 57 start-page: 8 issue: 1 year: 2005 ident: 10.1016/j.neuroimage.2012.02.071_bb0035 article-title: Perisylvian language networks of the human brain publication-title: Ann. Neurol. doi: 10.1002/ana.20319 – volume: 15 start-page: 468 issue: 7–8 year: 2002 ident: 10.1016/j.neuroimage.2012.02.071_bb0120 article-title: Fiber tracking: principles and strategies−a technical review publication-title: NMR Biomed. doi: 10.1002/nbm.781 – volume: 8 start-page: 333 issue: 7–8 year: 1995 ident: 10.1016/j.neuroimage.2012.02.071_bb0010 article-title: Inferring microstructural features and the physiological state of tissues from diffusion-weighted images publication-title: NMR Biomed. doi: 10.1002/nbm.1940080707 – volume: 35 start-page: 1459 issue: 4 year: 2007 ident: 10.1016/j.neuroimage.2012.02.071_bb0175 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.016 – volume: 44 start-page: 1105 issue: 8 year: 2008 ident: 10.1016/j.neuroimage.2012.02.071_bb0040 article-title: A diffusion tensor imaging tractography atlas for virtual in vivo dissections publication-title: Cortex doi: 10.1016/j.cortex.2008.05.004 – volume: 45 start-page: 832 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2012.02.071_bb0140 article-title: Tract-based morphometry for white matter group analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.12.023 – volume: 52 start-page: 1289 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2012.02.071_bb0215 article-title: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.05.049 – volume: 47 start-page: 618 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2012.02.071_bb0045 article-title: Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.04.057 – volume: 14 start-page: 1044 issue: 5 year: 2008 ident: 10.1016/j.neuroimage.2012.02.071_bb0210 article-title: Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber-clustering method publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2008.52 – volume: 19 start-page: 52 year: 2005 ident: 10.1016/j.neuroimage.2012.02.071_bb0155 article-title: Fiber tracking in q-ball fields using regularized particle trajectories publication-title: Inf Process Med Imaging doi: 10.1007/11505730_5 – start-page: 122 year: 2008 ident: 10.1016/j.neuroimage.2012.02.071_bb0225 article-title: Impact of rician adapted non-local means filtering on HARDI – volume: 51 start-page: 228 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2012.02.071_bb0200 article-title: Unsupervised white matter fiber clustering and tract probability map generation: applications of a Gaussian process framework for white matter fibers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.004 – volume: 27 start-page: 1032 issue: 5 year: 2006 ident: 10.1016/j.neuroimage.2012.02.071_bb0135 article-title: A method for clustering white matter fiber tracts publication-title: AJNR Am J Neuroradiol – volume: 7 start-page: 403 issue: 4 year: 2003 ident: 10.1016/j.neuroimage.2012.02.071_bb0020 article-title: A generic framework for parcellation of the cortical surface into gyri using geodesic Voronoï diagrams publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(03)00031-8 – volume: 39 start-page: 62 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2012.02.071_bb0085 article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.06.041 – year: 2005 ident: 10.1016/j.neuroimage.2012.02.071_bb0125 – year: 2010 ident: 10.1016/j.neuroimage.2012.02.071_bb0245 article-title: Robust automatic segmentation of ventricles: application to a genetic small vessel disease, cadasil – volume: 30 start-page: 1214 issue: 6 year: 2011 ident: 10.1016/j.neuroimage.2012.02.071_bb0005 article-title: Diffeomorphic brain registration under exhaustive sulcal constraints publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2108665 – start-page: 550 year: 2010 ident: 10.1016/j.neuroimage.2012.02.071_bb0235 article-title: Inference of a hardi fiber bundle atlas using a two-level clustering strategy – volume: 46 start-page: 486 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2012.02.071_bb0145 article-title: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer's disease participants publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.01.002 – volume: 36 start-page: 630 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2012.02.071_bb0190 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.049 – volume: 104 start-page: 17163 issue: 43 year: 2007 ident: 10.1016/j.neuroimage.2012.02.071_bb0025 article-title: Symmetries in human brain language pathways correlate with verbal recall publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0702116104 – volume: 41 start-page: 448 issue: 2 year: 2008 ident: 10.1016/j.neuroimage.2012.02.071_bb0205 article-title: Structure-specific statistical mapping of white matter tracts publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.01.013 |
SSID | ssj0009148 |
Score | 2.4805462 |
Snippet | This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1083 |
SubjectTerms | Algorithms Anatomy, Artistic Atlases as Topic Attention deficit hyperactivity disorder Bioengineering Brain Brain - cytology Bundle atlas Diffusion MRI Diffusion Tensor Imaging Fiber clustering Humans Life Sciences Methods Nerve Fibers - ultrastructure Nerve Fibers, Myelinated - ultrastructure Neural Pathways - cytology Nuclear medicine Studies Tractography segmentation White matter tracts |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYkBAvaPwuG8ggXi0Sx8nZ4gFViKlCjCcm9c2KY6cM0XRbEv5-7hInfdpUqU_tXeXmzvZX-7vvGPuYZZnPIDciBZcJpYMTWpZKFN5AoJ6QDqjA-eJnsbpU39f5Oh64tZFWOa2Jw0LtdxWdkX8iJTwNiO_1l-sbQV2j6HY1ttA4Yg9JuoyyGtawF91N1VgKl2dCo0Fk8oz8rkEv8mqLs5YIXnJQ7oT0ru3p6DfxJO8CocNmdH7CnkQUyZdj2J-yB6F5xh5dxHvy52yz7LvdIMbKa6KEcNeTmAJvw2Ybi40aftXwLUJnXO54R7VSUbyaE2m0DV3LiRO_4SUfSIei7R2d2UxfVXaIu1-wy_Nvv76uRGypIKrcyE4Uic-9VKCCKZ12dY07VwIB6jotdJFoE7z0pg7GQKK816oEZXSROiidodYwL9lxs2vCa8ZB-QqjXFBPBLq9RbNaQeUxwNK7Ui4YTE_SVlFvnNpe_LUTseyP3cfAUgxsgi9IFyydPa9HzY0DfMwULDvVlOIqaHFjOMD38-wbcceIJw70_oC5MQ-U5LpXyx-W3iMtJULk_9DobEodGxeJ1u5TesHezx_j9KY7m7IJux5tqIlqJnNt7rPJMEQIDfGZvxrTch4OITT8Uyvf3D-AU_aYfhIdWqfFGTvubvvwFtFW594NU-o_hCsoMw priority: 102 providerName: ProQuest |
Title | Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191200256X https://dx.doi.org/10.1016/j.neuroimage.2012.02.071 https://www.ncbi.nlm.nih.gov/pubmed/22414992 https://www.proquest.com/docview/1506872878 https://www.proquest.com/docview/1020832589 https://www.proquest.com/docview/1038617412 https://inria.hal.science/hal-00700800 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGkBAviG86xmQQr6aJ48S2eCrVpgJbNQ0m9c2Ka6croum0JDzyt3OXOJl4GKqEVDVqele5vvPdOf7dHSHvkyRxiUw1i6VNmFDeMsVzwTKnpceekFZigvPZPJtdii-LdLFHpn0uDMIqg-3vbHprrcOdcZjN8fV6Pf4GkQG4G9hv8NZxLzCDXUjU8g-_b2EeOhZdOlyaMKQOaJ4O49XWjFxvYOUiyIu31TtlfJeLuneFWMm7AtHWIZ08Jo9CJEkn3WCfkD1fPiUPzsJZ-TOymjT1ti3ISguEhVDbYEEFWvnVJiQclXRd0g2Ez2DyaI35UqGANUXgaOXriiIufkVz2gIPWdVYfG7T_1ReQ-z9nFyeHH-fzlhoq8CWqeY1yyKXOi6k8Dq3yhYFeK9IelkUcaaySGnvuNOF11pGwjklcim0ymIrc6uxPcwLsl9uS_-KUCncEiSdYV8EPMEFskLIpQMhc2dzPiKyn0mzDDXHsfXFT9ODy36YWxkYlIGJ4CXjEYkHzuuu7sYOPLoXlunzSsESGnAOO_B-HHj_0r8dud-BbgwDxZLds8mpwXtYTwmj8l9AdNirjgmGojJY4FFJ2LaqEXk7fA1LHM9t8tJvG6DBRqoJT5X-F00CIoLwEOb8ZaeWw3AwSoONLT_4r__4mjzET_hcO84OyX590_g3EJDV9qhdcfAuF_KI3J9ML07P8fr562wO10_H8_OLP2smOTk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IQEviM9RGGAQPFrEjhPbQghVwNSxdk-b1DcTx04ZoukgCYh_ir-Ru3y0T5v6MilPjS9yfefzz_bd7wh5Hcexj1ViGFcuZlIHx7TIJEu9UQFrQjqFCc6zk3RyJr_Mk_kO-TfkwmBY5eATW0ftVzmekb9FJjytAN_rDxc_GVaNwtvVoYRGZxbH4e8f2LJV748-gX7fCHH4-fTjhPVVBVieGFGzNPKJF1LJYDKnXVGA845UUEXBU51G2gQvvCmCMSqS3muZKWl0yp3KnMHqKPDdXXIDFt4IN3tqrjYkv1x2qXdJzDTnpo8c6uLJWn7K8yV4CQwoEy1TqOKXLYe73zAu8zLQ2y5-h3fJnR610nFnZvfITijvk5uz_l7-AVmMm3rVkr_SAkNQqGuQvIFWYbHsk5tKel7SJUB1cK-0xtysniybYpBqFeqKYgz-gma0DXJkVePwjGj4VFYDzn9Izq5lsB-RvXJVhseEKulzsKoUazDgbTE0K6TKPRiU8C4TI6KGkbR5z2-OZTZ-2CGQ7bvd6MCiDmwEj-IjwteSFx3HxxYyZlCWHXJYwetaWIi2kH23lu1xTodftpR-Bbax7ijSg0_GU4u_IXcT7gB-Q6ODwXRs75Qqu5lCI_Jy_RrcCd4RZWVYNdAGi7bGItHmqjYxqAigKIz5fmeW6-4gIoRNtHhydQdekFuT09nUTo9Ojp-S2_j38MCcpwdkr_7VhGeA9Gr3vJ1elHy97vn8H7yHZG4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa2Tpp4QfymY4BB8BitcZzYFkKosFUd26oJMWlvJo6dMrSmgyQg_jX-Ou4SJ33a1JdJeWp8kes7n8_2d98R8iaKIhuJWAWhMFHApTOBZCkPEquEw5qQRmCC88ksmZ7xz-fx-Qb51-XCIKyy84mNo7bLDM_I95AJTwqI7-Ve7mERp_uTD1c_A6wghTetXTmN1kSO3N8_sH0r3x_ug67fMjY5-PppGvgKA0EWK1YFycjGlnHBnUqNNHkOjnwknMjzMJHJSCpnmVW5U0qMuLWSp4IrmYRGpEZhpRT47ibZErgrGpCtjwez0y8ryt-Qt4l4cRTIMFQeR9Siyxq2yosF-AyEl7GGN1SE1y2Om98RpXldCNwshZN75K6PYem4Nbr7ZMMVD8j2ib-lf0jm47paNlSwNEdACjU1UjnQ0s0XPtWpoBcFXUDgDs6WVpip5amzKUJWS1eVFBH5c5rSBvIYlLXBE6PuU2kFUf8jcnYrw_2YDIpl4Z4SKrjNwMYSrMiAd8fQLOcis2BezJqUDYnoRlJnnu0ci25c6g7W9kOvdKBRB3oEjwiHJOwlr1rGjzVkVKcs3WW0gg_WsCytIfuul_VRTxvNrCn9Gmyj7yiShU_Hxxp_QyYn3A_8hka7nelo76JKvZpQQ_Kqfw3OBW-M0sIta2iDJVwjFkt1U5sIVASBKYz5k9Ys--5gfAhbarZzcwdekm2Yy_r4cHb0jNzBf4en52GySwbVr9o9h7CvMi_8_KLk221P6f-DDWoJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+fiber+bundle+segmentation+in+massive+tractography+datasets+using+a+multi-subject+bundle+atlas&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Guevara%2C+P.&rft.au=Duclap%2C+D.&rft.au=Poupon%2C+C.&rft.au=Marrakchi-Kacem%2C+L.&rft.date=2012-07-16&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=61&rft.issue=4&rft.spage=1083&rft.epage=1099&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.02.071&rft.externalDocID=S105381191200256X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |