Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas

This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a multi-subject bundle atlas derived from a two-level intra-subject and inter-subject clustering strategy. This atlas is a model of the brain white ma...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 61; no. 4; pp. 1083 - 1099
Main Authors Guevara, P., Duclap, D., Poupon, C., Marrakchi-Kacem, L., Fillard, P., Le Bihan, D., Leboyer, M., Houenou, J., Mangin, J.-F.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 16.07.2012
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a multi-subject bundle atlas derived from a two-level intra-subject and inter-subject clustering strategy. This atlas is a model of the brain white matter organization, computed for a group of subjects, made up of a set of generic fiber bundles that can be detected in most of the population. Each atlas bundle corresponds to several inter-subject clusters manually labeled to account for subdivisions of the underlying pathways often presenting large variability across subjects. An atlas bundle is represented by the multi-subject list of the centroids of all intra-subject clusters in order to get a good sampling of the shape and localization variability. The atlas, composed of 36 known deep white matter bundles and 47 superficial white matter bundles in each hemisphere, was inferred from a first database of 12 brains. It was successfully used to segment the deep white matter bundles in a second database of 20 brains and most of the superficial white matter bundles in 10 subjects of the same database. [Display omitted] ► We propose an automatic and robust method for fiber bundle segmentation in massive tractography datasets. ► The method is based on a novel HARDI multi-subject human brain fiber bundle atlas, composed of 36 known deep white matter bundles. ► The atlas also contains 47 superficial white matter bundles in each hemisphere, included in a multisubject bundle atlas for the first time. ► The method considers the fiber shape, position and length information in the segmentation, leading to better results than ROI-based approaches. ► Results can be used for population studies where each generic bundle is analyzed separately.
AbstractList This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a multi-subject bundle atlas derived from a two-level intra-subject and inter-subject clustering strategy. This atlas is a model of the brain white matter organization, computed for a group of subjects, made up of a set of generic fiber bundles that can be detected in most of the population. Each atlas bundle corresponds to several inter-subject clusters manually labeled to account for subdivisions of the underlying pathways often presenting large variability across subjects. An atlas bundle is represented by the multi-subject list of the centroids of all intra-subject clusters in order to get a good sampling of the shape and localization variability. The atlas, composed of 36 known deep white matter bundles and 47 superficial white matter bundles in each hemisphere, was inferred from a first database of 12 brains. It was successfully used to segment the deep white matter bundles in a second database of 20 brains and most of the superficial white matter bundles in 10 subjects of the same database. [Display omitted] ► We propose an automatic and robust method for fiber bundle segmentation in massive tractography datasets. ► The method is based on a novel HARDI multi-subject human brain fiber bundle atlas, composed of 36 known deep white matter bundles. ► The atlas also contains 47 superficial white matter bundles in each hemisphere, included in a multisubject bundle atlas for the first time. ► The method considers the fiber shape, position and length information in the segmentation, leading to better results than ROI-based approaches. ► Results can be used for population studies where each generic bundle is analyzed separately.
This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a multi-subject bundle atlas derived from a two-level intra-subject and inter-subject clustering strategy. This atlas is a model of the brain white matter organization, computed for a group of subjects, made up of a set of generic fiber bundles that can be detected in most of the population. Each atlas bundle corresponds to several inter-subject clusters manually labeled to account for subdivisions of the underlying pathways often presenting large variability across subjects. An atlas bundle is represented by the multi-subject list of the centroids of all intra-subject clusters in order to get a good sampling of the shape and localization variability. The atlas, composed of 36 known deep white matter bundles and 47 superficial white matter bundles in each hemisphere, was inferred from a first database of 12 brains. It was successfully used to segment the deep white matter bundles in a second database of 20 brains and most of the superficial white matter bundles in 10 subjects of the same database.This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a multi-subject bundle atlas derived from a two-level intra-subject and inter-subject clustering strategy. This atlas is a model of the brain white matter organization, computed for a group of subjects, made up of a set of generic fiber bundles that can be detected in most of the population. Each atlas bundle corresponds to several inter-subject clusters manually labeled to account for subdivisions of the underlying pathways often presenting large variability across subjects. An atlas bundle is represented by the multi-subject list of the centroids of all intra-subject clusters in order to get a good sampling of the shape and localization variability. The atlas, composed of 36 known deep white matter bundles and 47 superficial white matter bundles in each hemisphere, was inferred from a first database of 12 brains. It was successfully used to segment the deep white matter bundles in a second database of 20 brains and most of the superficial white matter bundles in 10 subjects of the same database.
This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a multi-subject bundle atlas derived from a two-level intra-subject and inter-subject clustering strategy. This atlas is a model of the brain white matter organization, computed for a group of subjects, made up of a set of generic fiber bundles that can be detected in most of the population. Each atlas bundle corresponds to several inter-subject clusters manually labeled to account for subdivisions of the underlying pathways often presenting large variability across subjects. An atlas bundle is represented by the multi-subject list of the centroids of all intra-subject clusters in order to get a good sampling of the shape and localization variability. The atlas, composed of 36 known deep white matter bundles and 47 superficial white matter bundles in each hemisphere, was inferred from a first database of 12 brains. It was successfully used to segment the deep white matter bundles in a second database of 20 brains and most of the superficial white matter bundles in 10 subjects of the same database.
Author Houenou, J.
Fillard, P.
Le Bihan, D.
Duclap, D.
Poupon, C.
Mangin, J.-F.
Guevara, P.
Marrakchi-Kacem, L.
Leboyer, M.
Author_xml – sequence: 1
  givenname: P.
  surname: Guevara
  fullname: Guevara, P.
  email: pamela.guevara@gmail.com
  organization: I2BM, CEA, Gif-sur-Yvette, France
– sequence: 2
  givenname: D.
  surname: Duclap
  fullname: Duclap, D.
  organization: I2BM, CEA, Gif-sur-Yvette, France
– sequence: 3
  givenname: C.
  surname: Poupon
  fullname: Poupon, C.
  organization: I2BM, CEA, Gif-sur-Yvette, France
– sequence: 4
  givenname: L.
  surname: Marrakchi-Kacem
  fullname: Marrakchi-Kacem, L.
  organization: I2BM, CEA, Gif-sur-Yvette, France
– sequence: 5
  givenname: P.
  surname: Fillard
  fullname: Fillard, P.
  organization: I2BM, CEA, Gif-sur-Yvette, France
– sequence: 6
  givenname: D.
  surname: Le Bihan
  fullname: Le Bihan, D.
  organization: I2BM, CEA, Gif-sur-Yvette, France
– sequence: 7
  givenname: M.
  surname: Leboyer
  fullname: Leboyer, M.
  organization: AP-HP, University Paris-East, Department of Psychiatry, INSERM, U955 Unit, France
– sequence: 8
  givenname: J.
  surname: Houenou
  fullname: Houenou, J.
  organization: I2BM, CEA, Gif-sur-Yvette, France
– sequence: 9
  givenname: J.-F.
  surname: Mangin
  fullname: Mangin, J.-F.
  organization: I2BM, CEA, Gif-sur-Yvette, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22414992$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-00700800$$DView record in HAL
BookMark eNqNkl2PEyEUhidmjfuhf8GQeKMXUw90ZoAbY92oa9LEG70mDJzpUmegAtOk_16a7q7JXjUhgcDDEw7vua4ufPBYVYTCggLtPm4XHucY3KQ3uGBA2QLK4PRFdUVBtrVsObs4rttlLSiVl9V1SlsAkLQRr6pLxhraSMmuqs1qzmHS2RkyuB4j6WdvRyQJNxP6XA6CJ86TSafk9khy1CaHTdS7-wOxOuuEOZE5Ob8hmkzzmF2d5n6LJj-qdB51el29HPSY8M3DfFP9_vb11-1dvf75_cftal2bVrJcd2BbyxreoNS96IeBUQYc-TDQTnQgJFpm5YBScmisFY3mjRQd7bnuJRXN8qb6cPLe61HtYvmheFBBO3W3WqvjHgAHEAB7Wtj3J3YXw98ZU1aTSwbHUXsMc1IUlkXNG8rOQBmIJWuFLOi7Z-g2zNGXohVtoROcCS4K9faBmvsJ7dNTH5MpgDgBJoaUIg5PCAV1bAK1Vf-bQB2bQEEZ_FjXp2dXjTslWdJz4zmCLycBlqT2DqNKxqE3aF0swSob3DmSz88kZnTeGT3-wcN5in8-XOmj
CitedBy_id crossref_primary_10_1016_j_jneumeth_2020_108626
crossref_primary_10_1016_j_neuroimage_2016_11_066
crossref_primary_10_1016_j_neulet_2022_136724
crossref_primary_10_3724_SP_J_1089_2022_19221
crossref_primary_10_1016_j_neuroimage_2021_118706
crossref_primary_10_1016_j_nicl_2023_103367
crossref_primary_10_1016_j_compbiomed_2017_01_016
crossref_primary_10_1002_hbm_24579
crossref_primary_10_3389_fnins_2024_1333243
crossref_primary_10_1016_j_cortex_2014_08_022
crossref_primary_10_3389_fninf_2017_00073
crossref_primary_10_1002_acn3_52204
crossref_primary_10_1016_j_neuroimage_2022_119197
crossref_primary_10_1016_j_neuroimage_2023_120362
crossref_primary_10_1016_j_neuroimage_2023_120086
crossref_primary_10_1186_s12938_020_00786_z
crossref_primary_10_3389_fnins_2016_00554
crossref_primary_10_3171_2018_11_PEDS18601
crossref_primary_10_1140_epjst_e2018_800072_1
crossref_primary_10_3389_fpain_2022_840328
crossref_primary_10_1007_s12021_023_09636_4
crossref_primary_10_1109_TBME_2015_2391913
crossref_primary_10_3389_fninf_2020_00032
crossref_primary_10_1016_j_neuroimage_2017_07_015
crossref_primary_10_3389_fninf_2014_00087
crossref_primary_10_1093_cercor_bhaa049
crossref_primary_10_1007_s00429_022_02503_z
crossref_primary_10_1111_jon_12934
crossref_primary_10_3389_fnins_2022_824069
crossref_primary_10_1007_s12021_016_9316_7
crossref_primary_10_1016_j_neuroimage_2013_04_009
crossref_primary_10_1016_j_neuroimage_2014_04_048
crossref_primary_10_1002_hbm_25697
crossref_primary_10_1016_j_neuroimage_2018_06_019
crossref_primary_10_1016_j_neuroimage_2013_05_055
crossref_primary_10_1007_s00429_021_02382_w
crossref_primary_10_1016_j_media_2024_103165
crossref_primary_10_1016_j_neuroimage_2015_10_032
crossref_primary_10_1016_j_neuroimage_2015_05_016
crossref_primary_10_1016_j_neuroimage_2021_118651
crossref_primary_10_1523_JNEUROSCI_0945_20_2020
crossref_primary_10_1016_j_nicl_2016_11_023
crossref_primary_10_1016_j_neuroimage_2014_08_021
crossref_primary_10_1002_hbm_22854
crossref_primary_10_1038_s41380_023_02031_0
crossref_primary_10_1016_j_artmed_2016_09_003
crossref_primary_10_1016_j_media_2023_102968
crossref_primary_10_1016_j_neuroimage_2018_01_006
crossref_primary_10_1016_j_neuroimage_2018_06_027
crossref_primary_10_1186_s13195_017_0288_0
crossref_primary_10_1016_j_neuroimage_2017_06_083
crossref_primary_10_1007_s00429_019_01855_3
crossref_primary_10_1093_cercor_bhab159
crossref_primary_10_1109_TCDS_2020_2968116
crossref_primary_10_1162_imag_a_00353
crossref_primary_10_3389_fnins_2017_00754
crossref_primary_10_1016_j_neubiorev_2017_10_007
crossref_primary_10_3389_fninf_2022_803934
crossref_primary_10_1007_s00429_018_1735_9
crossref_primary_10_1007_s12021_016_9295_8
crossref_primary_10_3389_fninf_2021_727859
crossref_primary_10_1109_TMI_2019_2902073
crossref_primary_10_1186_s12938_021_00909_0
crossref_primary_10_1016_j_media_2016_06_008
crossref_primary_10_1016_j_neuroimage_2016_11_027
crossref_primary_10_1109_TCDS_2021_3094555
crossref_primary_10_1016_j_physa_2018_02_002
crossref_primary_10_1371_journal_pone_0142860
crossref_primary_10_1016_j_neuroimage_2021_118870
crossref_primary_10_1016_S2590_2415_19_30382_4
crossref_primary_10_1371_journal_pone_0133337
crossref_primary_10_1016_j_media_2020_101761
crossref_primary_10_1016_j_neuroimage_2013_04_066
crossref_primary_10_1016_j_neuroimage_2017_10_058
crossref_primary_10_1002_hbm_23448
crossref_primary_10_1002_hbm_23043
crossref_primary_10_1016_j_neuroimage_2022_119550
crossref_primary_10_1002_mp_15495
crossref_primary_10_1016_j_nbas_2023_100067
crossref_primary_10_1371_journal_pone_0083847
crossref_primary_10_3390_a13120316
crossref_primary_10_1016_j_neuroimage_2018_05_044
crossref_primary_10_1016_j_neuroimage_2018_07_039
crossref_primary_10_3389_fninf_2022_777853
crossref_primary_10_1038_s41598_020_74054_4
crossref_primary_10_1038_s41598_024_69772_y
crossref_primary_10_3389_fnins_2024_1396518
crossref_primary_10_1016_j_media_2023_102759
crossref_primary_10_1111_jon_12854
crossref_primary_10_1007_s00429_020_02129_z
crossref_primary_10_1016_j_schres_2014_09_007
crossref_primary_10_1016_j_neuroimage_2019_05_051
crossref_primary_10_1016_j_jad_2016_04_038
crossref_primary_10_1016_j_neuroimage_2020_116703
crossref_primary_10_7887_jcns_32_474
crossref_primary_10_1016_j_neuroimage_2020_117402
crossref_primary_10_1016_j_media_2018_02_008
crossref_primary_10_1016_j_neuroimage_2020_116673
crossref_primary_10_1111_acps_12579
crossref_primary_10_1016_j_neuroimage_2021_118451
crossref_primary_10_1007_s12021_020_09497_1
crossref_primary_10_1007_s12021_022_09593_4
crossref_primary_10_3171_2019_4_PEDS1994
crossref_primary_10_1016_j_neuroimage_2020_117070
crossref_primary_10_1093_ons_opx177
crossref_primary_10_1016_j_neuroimage_2018_05_027
crossref_primary_10_3389_fnins_2024_1394681
crossref_primary_10_1016_j_neuroimage_2020_117513
crossref_primary_10_1016_j_neuroimage_2021_118502
crossref_primary_10_1016_j_patcog_2019_06_002
crossref_primary_10_1016_j_neuroscience_2013_12_044
Cites_doi 10.1002/mrm.21277
10.1006/nimg.2002.1136
10.1016/j.neuroimage.2009.08.017
10.1016/j.neuroimage.2010.07.050
10.1002/jmri.1076
10.1109/TMI.2007.906785
10.1016/j.neuroimage.2010.10.028
10.1016/j.neuroimage.2010.03.076
10.1109/TMI.2008.2004424
10.1002/mrm.10308
10.1016/j.neuroimage.2010.07.038
10.1093/cercor/bhh055
10.1016/j.neuroimage.2008.07.009
10.1016/j.neuroimage.2008.10.040
10.1016/j.neuroimage.2006.02.024
10.1002/ana.20319
10.1002/nbm.781
10.1002/nbm.1940080707
10.1016/j.neuroimage.2007.02.016
10.1016/j.cortex.2008.05.004
10.1016/j.neuroimage.2008.12.023
10.1016/j.neuroimage.2010.05.049
10.1016/j.neuroimage.2009.04.057
10.1109/TVCG.2008.52
10.1007/11505730_5
10.1016/j.neuroimage.2010.01.004
10.1016/S1361-8415(03)00031-8
10.1016/j.neuroimage.2007.06.041
10.1109/TMI.2011.2108665
10.1016/j.neuroimage.2009.01.002
10.1016/j.neuroimage.2007.02.049
10.1073/pnas.0702116104
10.1016/j.neuroimage.2008.01.013
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jul 16, 2012
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jul 16, 2012
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
1XC
DOI 10.1016/j.neuroimage.2012.02.071
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
Biological science database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
MEDLINE - Academic
ProQuest One Psychology


Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1099
ExternalDocumentID oai_HAL_hal_00700800v1
3245014851
22414992
10_1016_j_neuroimage_2012_02_071
S105381191200256X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
1XC
UMC
ID FETCH-LOGICAL-c592t-60d5d2474e9ab8bff21207e7ff1686089ed2d9fe99704dd84a749861b7ab91843
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Fri May 09 12:25:10 EDT 2025
Fri Jul 11 11:39:19 EDT 2025
Thu Jul 10 23:40:39 EDT 2025
Wed Aug 13 09:39:29 EDT 2025
Thu Apr 03 07:09:23 EDT 2025
Thu Apr 24 22:57:57 EDT 2025
Tue Jul 01 02:14:46 EDT 2025
Fri Feb 23 02:36:05 EST 2024
Tue Aug 26 16:33:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Tractography segmentation
Diffusion MRI
White matter tracts
Fiber clustering
Bundle atlas
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c592t-60d5d2474e9ab8bff21207e7ff1686089ed2d9fe99704dd84a749861b7ab91843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ORCID 0000-0001-5473-3697
PMID 22414992
PQID 1506872878
PQPubID 2031077
PageCount 17
ParticipantIDs hal_primary_oai_HAL_hal_00700800v1
proquest_miscellaneous_1038617412
proquest_miscellaneous_1020832589
proquest_journals_1506872878
pubmed_primary_22414992
crossref_primary_10_1016_j_neuroimage_2012_02_071
crossref_citationtrail_10_1016_j_neuroimage_2012_02_071
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_02_071
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_02_071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-16
PublicationDateYYYYMMDD 2012-07-16
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2012
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Basser, Pierpaoli (bb0010) 1995; 8
Marrakchi-Kacem, Poupon, Jouvent, Rekik, Mangin, Poupon (bb0245) 2010
Zhang, Zhang, Oishi, Faria, Jiang, Li, Akhter, Rosa-Neto, Pike, Evans, Toga, Woods, Mazziotta, Miller, van Zijl, Mori (bb0215) 2010; 52
Catani, Howard, Pajevic, Jones (bb0030) 2002; 17
Catani, Jones, ffytche (bb0035) 2005; 57
O'Donnell, Westin (bb0130) 2007; 26
Cachia, Mangin, Rivière, Papadopoulos-Orfanos, Kherif, Bloch (bb0020) 2003; 7
Mori, Wakana, van Zijl, Nagae-Poetscher (bb0125) 2005
Yushkevich, Zhang, Simon, Gee (bb0205) 2008; 41
Guevara, Poupon, Rivière, Cointepas, Marrakchi, Descoteaux, Fillard, Thirion, Mangin (bb0235) 2010
Vercauteren, Pennec, Perchant, Ayache (bb0180) 2009; 45
Descoteaux, Angelino, Fitzgibbons, Deriche (bb0055) 2007; 58
Wassermann, Bloy, Kanterakis, Verma, Deriche (bb0200) 2010; 51
Maddah, Mewes, Haker, Grimson, Warfield (bb0240) 2005
Catani, Allin, Husain, Pugliese, Mesulam, Murray, Jones (bb0025) 2007; 104
O'Donnell, Kubicki, Shenton, Dreusicke, Grimson, Westin (bb0135) 2006; 27
Reese, Heid, Weisskoff, Wedeen (bb0165) 2003; 49
Zhang, Correia, Laidlaw (bb0210) 2008; 14
Li, Xue, Guo, Liu, Hunter, Wong (bb0095) 2010; 49
Tournier, Calamante, Connelly (bb0175) 2007; 35
Mori, van Zijl (bb0120) 2002; 15
Auzias, Colliot, Glaunes, Perrot, Mangin, Trouve, Baillet (bb0005) 2011; 30
Ceritoglu, Oishi, Li, Chou, Younes, Albert, Lyketsos, van Zijl, Miller, Mori (bb0045) 2009; 47
Catani, Thiebaut de Schotten (bb0040) 2008; 44
Descoteaux, Wiest-Daesslé, Prima, Barillot, Deriche (bb0225) 2008
Oishi, Faria, Jiang, Li, Akhter, Zhang, Hsu, Miller, van Zijl, Albert, Lyketsos, Woods, Toga, Pike, Rosa-Neto, Evans, Mazziotta, Mori (bb0145) 2009; 46
Marrakchi-Kacem, Poupon, Mangin, Poupon (bb0250) 2010
Guevara, Poupon, Riviére, Cointepas, Descoteaux, Thirion, Mangin (bb0075) 2011; 54
Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub, Hua, Zhang, Jiang, Dubey, Blitz, van Zijl, Mori (bb0190) 2007; 36
Wang, Grimson, Westin (bb0195) 2011; 54
O'Donnell, Westin, Golby (bb0140) 2009; 45
Oishi, Zilles, Amunts, Faria, Jiang, Li, Akhter, Hua, Woods, Toga, Pike, Rosa-Neto, Evans, Zhang, Huang, Miller, van Zijl, Mazziotta, Mori (bb0150) 2008; 43
Büchel, Raedler, Sommer, Sach, Weiller, Koch (bb0015) 2004; 14
Guevara, Duclap, Marrakchi-Kacem, Rivière, Cointepas, Poupon, Mangin (bb0230) 2011
Corouge, Gouttard, Gerig (bb0220) 2004; vol. 1
Le Bihan, Mangin, Poupon, Clark, Pappata, Molko, Chabriat (bb0090) 2001; 13
Perrin, Poupon, Cointepas, Rieul, Golestani, Pallier, Rivière, Constantinesco, Le Bihan, Mangin (bb0155) 2005; 19
Smith, Jenkinson, Johansen-Berg, Rueckert, Nichols, Mackay, Watkins, Ciccarelli, Cader, Matthews, Behrens (bb0170) 2006; 31
Poupon, Poupon, Allirol (bb0255) 2006
Visser, Nijhuis, Buitelaar, Zwiers (bb0185) 2011; 54
Lawes, Barrick, Murugam, Spierings, Evans, Song, Clark (bb0085) 2008; 39
Lyu, Seong, Shin (bb0100) 2010; 52
Descoteaux, Deriche, Knösche, Anwander (bb0060) 2009; 28
Oishi (10.1016/j.neuroimage.2012.02.071_bb0145) 2009; 46
Wakana (10.1016/j.neuroimage.2012.02.071_bb0190) 2007; 36
Le Bihan (10.1016/j.neuroimage.2012.02.071_bb0090) 2001; 13
Lawes (10.1016/j.neuroimage.2012.02.071_bb0085) 2008; 39
Visser (10.1016/j.neuroimage.2012.02.071_bb0185) 2011; 54
Yushkevich (10.1016/j.neuroimage.2012.02.071_bb0205) 2008; 41
Catani (10.1016/j.neuroimage.2012.02.071_bb0030) 2002; 17
O'Donnell (10.1016/j.neuroimage.2012.02.071_bb0130) 2007; 26
Catani (10.1016/j.neuroimage.2012.02.071_bb0040) 2008; 44
Büchel (10.1016/j.neuroimage.2012.02.071_bb0015) 2004; 14
Tournier (10.1016/j.neuroimage.2012.02.071_bb0175) 2007; 35
O'Donnell (10.1016/j.neuroimage.2012.02.071_bb0140) 2009; 45
Marrakchi-Kacem (10.1016/j.neuroimage.2012.02.071_bb0250) 2010
Smith (10.1016/j.neuroimage.2012.02.071_bb0170) 2006; 31
Mori (10.1016/j.neuroimage.2012.02.071_bb0120) 2002; 15
Auzias (10.1016/j.neuroimage.2012.02.071_bb0005) 2011; 30
Guevara (10.1016/j.neuroimage.2012.02.071_bb0230) 2011
Mori (10.1016/j.neuroimage.2012.02.071_bb0125) 2005
Wang (10.1016/j.neuroimage.2012.02.071_bb0195) 2011; 54
Zhang (10.1016/j.neuroimage.2012.02.071_bb0210) 2008; 14
Guevara (10.1016/j.neuroimage.2012.02.071_bb0235) 2010
Ceritoglu (10.1016/j.neuroimage.2012.02.071_bb0045) 2009; 47
Descoteaux (10.1016/j.neuroimage.2012.02.071_bb0055) 2007; 58
O'Donnell (10.1016/j.neuroimage.2012.02.071_bb0135) 2006; 27
Zhang (10.1016/j.neuroimage.2012.02.071_bb0215) 2010; 52
Li (10.1016/j.neuroimage.2012.02.071_bb0095) 2010; 49
Corouge (10.1016/j.neuroimage.2012.02.071_bb0220) 2004; vol. 1
Oishi (10.1016/j.neuroimage.2012.02.071_bb0150) 2008; 43
Catani (10.1016/j.neuroimage.2012.02.071_bb0035) 2005; 57
Descoteaux (10.1016/j.neuroimage.2012.02.071_bb0225) 2008
Marrakchi-Kacem (10.1016/j.neuroimage.2012.02.071_bb0245) 2010
Wassermann (10.1016/j.neuroimage.2012.02.071_bb0200) 2010; 51
Guevara (10.1016/j.neuroimage.2012.02.071_bb0075) 2011; 54
Poupon (10.1016/j.neuroimage.2012.02.071_bb0255) 2006
Vercauteren (10.1016/j.neuroimage.2012.02.071_bb0180) 2009; 45
Catani (10.1016/j.neuroimage.2012.02.071_bb0025) 2007; 104
Lyu (10.1016/j.neuroimage.2012.02.071_bb0100) 2010; 52
Perrin (10.1016/j.neuroimage.2012.02.071_bb0155) 2005; 19
Maddah (10.1016/j.neuroimage.2012.02.071_bb0240) 2005
Basser (10.1016/j.neuroimage.2012.02.071_bb0010) 1995; 8
Cachia (10.1016/j.neuroimage.2012.02.071_bb0020) 2003; 7
Descoteaux (10.1016/j.neuroimage.2012.02.071_bb0060) 2009; 28
Reese (10.1016/j.neuroimage.2012.02.071_bb0165) 2003; 49
References_xml – volume: 35
  start-page: 1459
  year: 2007
  end-page: 1472
  ident: bb0175
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: NeuroImage
– volume: 51
  start-page: 228
  year: 2010
  end-page: 241
  ident: bb0200
  article-title: Unsupervised white matter fiber clustering and tract probability map generation: applications of a Gaussian process framework for white matter fibers
  publication-title: NeuroImage
– volume: 44
  start-page: 1105
  year: 2008
  end-page: 1132
  ident: bb0040
  article-title: A diffusion tensor imaging tractography atlas for virtual
  publication-title: Cortex
– volume: 104
  start-page: 17163
  year: 2007
  end-page: 17168
  ident: bb0025
  article-title: Symmetries in human brain language pathways correlate with verbal recall
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 8
  start-page: 333
  year: 1995
  end-page: 344
  ident: bb0010
  article-title: Inferring microstructural features and the physiological state of tissues from diffusion-weighted images
  publication-title: NMR Biomed.
– volume: 49
  start-page: 1249
  year: 2010
  end-page: 1258
  ident: bb0095
  article-title: A hybrid approach to automatic clustering of white matter fibers
  publication-title: NeuroImage
– year: 2011
  ident: bb0230
  article-title: Accurate tractography propagation mask using T1-weighted data rather than FA
  publication-title: ISMRM
– volume: 15
  start-page: 468
  year: 2002
  end-page: 480
  ident: bb0120
  article-title: Fiber tracking: principles and strategies
  publication-title: NMR Biomed.
– volume: 52
  start-page: 1289
  year: 2010
  end-page: 1301
  ident: bb0215
  article-title: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy
  publication-title: NeuroImage
– volume: 7
  start-page: 403
  year: 2003
  end-page: 416
  ident: bb0020
  article-title: A generic framework for parcellation of the cortical surface into gyri using geodesic Voronoï diagrams
  publication-title: Med. Image Anal.
– volume: 27
  start-page: 1032
  year: 2006
  end-page: 1036
  ident: bb0135
  article-title: A method for clustering white matter fiber tracts
  publication-title: AJNR Am J Neuroradiol
– volume: 54
  start-page: 290
  year: 2011
  end-page: 302
  ident: bb0195
  article-title: Tractography segmentation using a hierarchical dirichlet processes mixture model
  publication-title: NeuroImage
– volume: 57
  start-page: 8
  year: 2005
  end-page: 16
  ident: bb0035
  article-title: Perisylvian language networks of the human brain
  publication-title: Ann. Neurol.
– volume: 19
  start-page: 52
  year: 2005
  end-page: 63
  ident: bb0155
  article-title: Fiber tracking in q-ball fields using regularized particle trajectories
  publication-title: Inf Process Med Imaging
– volume: 31
  start-page: 1487
  year: 2006
  end-page: 1505
  ident: bb0170
  article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data
  publication-title: NeuroImage
– volume: vol. 1
  start-page: 344
  year: 2004
  end-page: 347
  ident: bb0220
  article-title: Towards a shape model of white matter fiber bundles using diffusion tensor MRI
  publication-title: ISBI 2004
– volume: 49
  start-page: 177
  year: 2003
  end-page: 182
  ident: bb0165
  article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo
  publication-title: Magn. Reson. Med.
– volume: 36
  start-page: 630
  year: 2007
  end-page: 644
  ident: bb0190
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: NeuroImage
– volume: 28
  start-page: 269
  year: 2009
  end-page: 286
  ident: bb0060
  article-title: Deterministic and probabilistic tractography based on complex fibre orientation distributions
  publication-title: IEEE Trans. Med. Imaging
– start-page: 122
  year: 2008
  end-page: 130
  ident: bb0225
  article-title: Impact of rician adapted non-local means filtering on HARDI
  publication-title: MICCAI 2008. Vol. LNCS 5762
– year: 2010
  ident: bb0245
  article-title: Robust automatic segmentation of ventricles: application to a genetic small vessel disease, cadasil
  publication-title: HBM 2010. Barcelona, Spain
– year: 2006
  ident: bb0255
  article-title: NMR: a free database dedicated to the anatomofunctional study of the human brain connectivity
  publication-title: HBM. Florence, Italy
– volume: 39
  start-page: 62
  year: 2008
  end-page: 79
  ident: bb0085
  article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection
  publication-title: NeuroImage
– volume: 43
  start-page: 447
  year: 2008
  end-page: 457
  ident: bb0150
  article-title: Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter
  publication-title: NeuroImage
– volume: 52
  start-page: 142
  year: 2010
  end-page: 157
  ident: bb0100
  article-title: Spectral-based automatic labeling and refining of human cortical sulcal curves using expert-provided examples
  publication-title: NeuroImage
– volume: 26
  start-page: 1562
  year: 2007
  end-page: 1575
  ident: bb0130
  article-title: Automatic tractography segmentation using a high-dimensional white matter atlas
  publication-title: IEEE Trans. Med. Imaging
– volume: 54
  start-page: 303
  year: 2011
  end-page: 312
  ident: bb0185
  article-title: Partition-based mass clustering of tractography streamlines
  publication-title: NeuroImage
– year: 2005
  ident: bb0125
  article-title: MRI Atlas of Human White Matter
– volume: 17
  start-page: 77
  year: 2002
  end-page: 94
  ident: bb0030
  article-title: Virtual
  publication-title: NeuroImage
– volume: 45
  start-page: S61
  year: 2009
  end-page: S72
  ident: bb0180
  article-title: Diffeomorphic demons: efficient non-parametric image registration
  publication-title: NeuroImage
– volume: 14
  start-page: 945
  year: 2004
  end-page: 951
  ident: bb0015
  article-title: White matter asymmetry in the human brain: a diffusion tensor MRI study
  publication-title: Cereb Cortex
– start-page: 61
  year: 2010
  end-page: 64
  ident: bb0250
  article-title: Multi-contrast deep nuclei segmentation using a probabilistic atlas
  publication-title: ISBI 2010
– volume: 30
  start-page: 1214
  year: 2011
  end-page: 1227
  ident: bb0005
  article-title: Diffeomorphic brain registration under exhaustive sulcal constraints
  publication-title: IEEE Trans. Med. Imaging
– start-page: 188
  year: 2005
  end-page: 195
  ident: bb0240
  article-title: Automated atlas-based clustering of white matter fiber tracts from DTMRI
  publication-title: MICCAI 2005, LNCS 3749
– volume: 47
  start-page: 618
  year: 2009
  end-page: 627
  ident: bb0045
  article-title: Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging
  publication-title: NeuroImage
– volume: 13
  start-page: 534
  year: 2001
  end-page: 546
  ident: bb0090
  article-title: Diffusion tensor imaging: concepts and applications
  publication-title: J. Magn. Reson. Imaging
– start-page: 550
  year: 2010
  end-page: 557
  ident: bb0235
  article-title: Inference of a hardi fiber bundle atlas using a two-level clustering strategy
  publication-title: MICCAI 2010. Vol. LNCS 6361
– volume: 54
  start-page: 1975
  year: 2011
  end-page: 1993
  ident: bb0075
  article-title: Robust clustering of massive tractography datasets
  publication-title: NeuroImage
– volume: 14
  start-page: 1044
  year: 2008
  end-page: 1053
  ident: bb0210
  article-title: Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber-clustering method
  publication-title: IEEE Trans. Vis. Comput. Graph.
– volume: 46
  start-page: 486
  year: 2009
  end-page: 499
  ident: bb0145
  article-title: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer's disease participants
  publication-title: NeuroImage
– volume: 58
  start-page: 497
  year: 2007
  end-page: 510
  ident: bb0055
  article-title: Regularized, fast and robust analytical q-ball imaging
  publication-title: Magn. Reson. Med.
– volume: 45
  start-page: 832
  year: 2009
  end-page: 844
  ident: bb0140
  article-title: Tract-based morphometry for white matter group analysis
  publication-title: NeuroImage
– volume: 41
  start-page: 448
  year: 2008
  end-page: 461
  ident: bb0205
  article-title: Structure-specific statistical mapping of white matter tracts
  publication-title: NeuroImage
– volume: 58
  start-page: 497
  year: 2007
  ident: 10.1016/j.neuroimage.2012.02.071_bb0055
  article-title: Regularized, fast and robust analytical q-ball imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21277
– start-page: 61
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.071_bb0250
  article-title: Multi-contrast deep nuclei segmentation using a probabilistic atlas
– volume: 17
  start-page: 77
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2012.02.071_bb0030
  article-title: Virtual in vivo interactive dissection of white matter fasciculi in the human brain
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1136
– volume: 49
  start-page: 1249
  issue: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.071_bb0095
  article-title: A hybrid approach to automatic clustering of white matter fibers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.08.017
– start-page: 188
  year: 2005
  ident: 10.1016/j.neuroimage.2012.02.071_bb0240
  article-title: Automated atlas-based clustering of white matter fiber tracts from DTMRI
– volume: 54
  start-page: 290
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2012.02.071_bb0195
  article-title: Tractography segmentation using a hierarchical dirichlet processes mixture model
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.050
– volume: 13
  start-page: 534
  issue: 4
  year: 2001
  ident: 10.1016/j.neuroimage.2012.02.071_bb0090
  article-title: Diffusion tensor imaging: concepts and applications
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.1076
– volume: 26
  start-page: 1562
  issue: 11
  year: 2007
  ident: 10.1016/j.neuroimage.2012.02.071_bb0130
  article-title: Automatic tractography segmentation using a high-dimensional white matter atlas
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.906785
– year: 2011
  ident: 10.1016/j.neuroimage.2012.02.071_bb0230
  article-title: Accurate tractography propagation mask using T1-weighted data rather than FA
– volume: 54
  start-page: 1975
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroimage.2012.02.071_bb0075
  article-title: Robust clustering of massive tractography datasets
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.10.028
– volume: vol. 1
  start-page: 344
  year: 2004
  ident: 10.1016/j.neuroimage.2012.02.071_bb0220
  article-title: Towards a shape model of white matter fiber bundles using diffusion tensor MRI
– volume: 52
  start-page: 142
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.071_bb0100
  article-title: Spectral-based automatic labeling and refining of human cortical sulcal curves using expert-provided examples
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.076
– volume: 28
  start-page: 269
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2012.02.071_bb0060
  article-title: Deterministic and probabilistic tractography based on complex fibre orientation distributions
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2008.2004424
– volume: 49
  start-page: 177
  issue: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2012.02.071_bb0165
  article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10308
– volume: 54
  start-page: 303
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2012.02.071_bb0185
  article-title: Partition-based mass clustering of tractography streamlines
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.038
– year: 2006
  ident: 10.1016/j.neuroimage.2012.02.071_bb0255
  article-title: NMR: a free database dedicated to the anatomofunctional study of the human brain connectivity
– volume: 14
  start-page: 945
  issue: 9
  year: 2004
  ident: 10.1016/j.neuroimage.2012.02.071_bb0015
  article-title: White matter asymmetry in the human brain: a diffusion tensor MRI study
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhh055
– volume: 43
  start-page: 447
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2012.02.071_bb0150
  article-title: Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.07.009
– volume: 45
  start-page: S61
  issue: 1 Suppl
  year: 2009
  ident: 10.1016/j.neuroimage.2012.02.071_bb0180
  article-title: Diffeomorphic demons: efficient non-parametric image registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.040
– volume: 31
  start-page: 1487
  issue: 4
  year: 2006
  ident: 10.1016/j.neuroimage.2012.02.071_bb0170
  article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.02.024
– volume: 57
  start-page: 8
  issue: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2012.02.071_bb0035
  article-title: Perisylvian language networks of the human brain
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20319
– volume: 15
  start-page: 468
  issue: 7–8
  year: 2002
  ident: 10.1016/j.neuroimage.2012.02.071_bb0120
  article-title: Fiber tracking: principles and strategies−a technical review
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.781
– volume: 8
  start-page: 333
  issue: 7–8
  year: 1995
  ident: 10.1016/j.neuroimage.2012.02.071_bb0010
  article-title: Inferring microstructural features and the physiological state of tissues from diffusion-weighted images
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1940080707
– volume: 35
  start-page: 1459
  issue: 4
  year: 2007
  ident: 10.1016/j.neuroimage.2012.02.071_bb0175
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.016
– volume: 44
  start-page: 1105
  issue: 8
  year: 2008
  ident: 10.1016/j.neuroimage.2012.02.071_bb0040
  article-title: A diffusion tensor imaging tractography atlas for virtual in vivo dissections
  publication-title: Cortex
  doi: 10.1016/j.cortex.2008.05.004
– volume: 45
  start-page: 832
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2012.02.071_bb0140
  article-title: Tract-based morphometry for white matter group analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.12.023
– volume: 52
  start-page: 1289
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.071_bb0215
  article-title: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.05.049
– volume: 47
  start-page: 618
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2012.02.071_bb0045
  article-title: Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.04.057
– volume: 14
  start-page: 1044
  issue: 5
  year: 2008
  ident: 10.1016/j.neuroimage.2012.02.071_bb0210
  article-title: Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber-clustering method
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2008.52
– volume: 19
  start-page: 52
  year: 2005
  ident: 10.1016/j.neuroimage.2012.02.071_bb0155
  article-title: Fiber tracking in q-ball fields using regularized particle trajectories
  publication-title: Inf Process Med Imaging
  doi: 10.1007/11505730_5
– start-page: 122
  year: 2008
  ident: 10.1016/j.neuroimage.2012.02.071_bb0225
  article-title: Impact of rician adapted non-local means filtering on HARDI
– volume: 51
  start-page: 228
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.071_bb0200
  article-title: Unsupervised white matter fiber clustering and tract probability map generation: applications of a Gaussian process framework for white matter fibers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.004
– volume: 27
  start-page: 1032
  issue: 5
  year: 2006
  ident: 10.1016/j.neuroimage.2012.02.071_bb0135
  article-title: A method for clustering white matter fiber tracts
  publication-title: AJNR Am J Neuroradiol
– volume: 7
  start-page: 403
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2012.02.071_bb0020
  article-title: A generic framework for parcellation of the cortical surface into gyri using geodesic Voronoï diagrams
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(03)00031-8
– volume: 39
  start-page: 62
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2012.02.071_bb0085
  article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.06.041
– year: 2005
  ident: 10.1016/j.neuroimage.2012.02.071_bb0125
– year: 2010
  ident: 10.1016/j.neuroimage.2012.02.071_bb0245
  article-title: Robust automatic segmentation of ventricles: application to a genetic small vessel disease, cadasil
– volume: 30
  start-page: 1214
  issue: 6
  year: 2011
  ident: 10.1016/j.neuroimage.2012.02.071_bb0005
  article-title: Diffeomorphic brain registration under exhaustive sulcal constraints
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2108665
– start-page: 550
  year: 2010
  ident: 10.1016/j.neuroimage.2012.02.071_bb0235
  article-title: Inference of a hardi fiber bundle atlas using a two-level clustering strategy
– volume: 46
  start-page: 486
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2012.02.071_bb0145
  article-title: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer's disease participants
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.01.002
– volume: 36
  start-page: 630
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2012.02.071_bb0190
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.049
– volume: 104
  start-page: 17163
  issue: 43
  year: 2007
  ident: 10.1016/j.neuroimage.2012.02.071_bb0025
  article-title: Symmetries in human brain language pathways correlate with verbal recall
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0702116104
– volume: 41
  start-page: 448
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2012.02.071_bb0205
  article-title: Structure-specific statistical mapping of white matter tracts
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.01.013
SSID ssj0009148
Score 2.4805462
Snippet This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1083
SubjectTerms Algorithms
Anatomy, Artistic
Atlases as Topic
Attention deficit hyperactivity disorder
Bioengineering
Brain
Brain - cytology
Bundle atlas
Diffusion MRI
Diffusion Tensor Imaging
Fiber clustering
Humans
Life Sciences
Methods
Nerve Fibers - ultrastructure
Nerve Fibers, Myelinated - ultrastructure
Neural Pathways - cytology
Nuclear medicine
Studies
Tractography segmentation
White matter tracts
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYkBAvaPwuG8ggXi0Sx8nZ4gFViKlCjCcm9c2KY6cM0XRbEv5-7hInfdpUqU_tXeXmzvZX-7vvGPuYZZnPIDciBZcJpYMTWpZKFN5AoJ6QDqjA-eJnsbpU39f5Oh64tZFWOa2Jw0LtdxWdkX8iJTwNiO_1l-sbQV2j6HY1ttA4Yg9JuoyyGtawF91N1VgKl2dCo0Fk8oz8rkEv8mqLs5YIXnJQ7oT0ru3p6DfxJO8CocNmdH7CnkQUyZdj2J-yB6F5xh5dxHvy52yz7LvdIMbKa6KEcNeTmAJvw2Ybi40aftXwLUJnXO54R7VSUbyaE2m0DV3LiRO_4SUfSIei7R2d2UxfVXaIu1-wy_Nvv76uRGypIKrcyE4Uic-9VKCCKZ12dY07VwIB6jotdJFoE7z0pg7GQKK816oEZXSROiidodYwL9lxs2vCa8ZB-QqjXFBPBLq9RbNaQeUxwNK7Ui4YTE_SVlFvnNpe_LUTseyP3cfAUgxsgi9IFyydPa9HzY0DfMwULDvVlOIqaHFjOMD38-wbcceIJw70_oC5MQ-U5LpXyx-W3iMtJULk_9DobEodGxeJ1u5TesHezx_j9KY7m7IJux5tqIlqJnNt7rPJMEQIDfGZvxrTch4OITT8Uyvf3D-AU_aYfhIdWqfFGTvubvvwFtFW594NU-o_hCsoMw
  priority: 102
  providerName: ProQuest
Title Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191200256X
https://dx.doi.org/10.1016/j.neuroimage.2012.02.071
https://www.ncbi.nlm.nih.gov/pubmed/22414992
https://www.proquest.com/docview/1506872878
https://www.proquest.com/docview/1020832589
https://www.proquest.com/docview/1038617412
https://inria.hal.science/hal-00700800
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGkBAviG86xmQQr6aJ48S2eCrVpgJbNQ0m9c2Ka6croum0JDzyt3OXOJl4GKqEVDVqele5vvPdOf7dHSHvkyRxiUw1i6VNmFDeMsVzwTKnpceekFZigvPZPJtdii-LdLFHpn0uDMIqg-3vbHprrcOdcZjN8fV6Pf4GkQG4G9hv8NZxLzCDXUjU8g-_b2EeOhZdOlyaMKQOaJ4O49XWjFxvYOUiyIu31TtlfJeLuneFWMm7AtHWIZ08Jo9CJEkn3WCfkD1fPiUPzsJZ-TOymjT1ti3ISguEhVDbYEEFWvnVJiQclXRd0g2Ez2DyaI35UqGANUXgaOXriiIufkVz2gIPWdVYfG7T_1ReQ-z9nFyeHH-fzlhoq8CWqeY1yyKXOi6k8Dq3yhYFeK9IelkUcaaySGnvuNOF11pGwjklcim0ymIrc6uxPcwLsl9uS_-KUCncEiSdYV8EPMEFskLIpQMhc2dzPiKyn0mzDDXHsfXFT9ODy36YWxkYlIGJ4CXjEYkHzuuu7sYOPLoXlunzSsESGnAOO_B-HHj_0r8dud-BbgwDxZLds8mpwXtYTwmj8l9AdNirjgmGojJY4FFJ2LaqEXk7fA1LHM9t8tJvG6DBRqoJT5X-F00CIoLwEOb8ZaeWw3AwSoONLT_4r__4mjzET_hcO84OyX590_g3EJDV9qhdcfAuF_KI3J9ML07P8fr562wO10_H8_OLP2smOTk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IQEviM9RGGAQPFrEjhPbQghVwNSxdk-b1DcTx04ZoukgCYh_ir-Ru3y0T5v6MilPjS9yfefzz_bd7wh5Hcexj1ViGFcuZlIHx7TIJEu9UQFrQjqFCc6zk3RyJr_Mk_kO-TfkwmBY5eATW0ftVzmekb9FJjytAN_rDxc_GVaNwtvVoYRGZxbH4e8f2LJV748-gX7fCHH4-fTjhPVVBVieGFGzNPKJF1LJYDKnXVGA845UUEXBU51G2gQvvCmCMSqS3muZKWl0yp3KnMHqKPDdXXIDFt4IN3tqrjYkv1x2qXdJzDTnpo8c6uLJWn7K8yV4CQwoEy1TqOKXLYe73zAu8zLQ2y5-h3fJnR610nFnZvfITijvk5uz_l7-AVmMm3rVkr_SAkNQqGuQvIFWYbHsk5tKel7SJUB1cK-0xtysniybYpBqFeqKYgz-gma0DXJkVePwjGj4VFYDzn9Izq5lsB-RvXJVhseEKulzsKoUazDgbTE0K6TKPRiU8C4TI6KGkbR5z2-OZTZ-2CGQ7bvd6MCiDmwEj-IjwteSFx3HxxYyZlCWHXJYwetaWIi2kH23lu1xTodftpR-Bbax7ijSg0_GU4u_IXcT7gB-Q6ODwXRs75Qqu5lCI_Jy_RrcCd4RZWVYNdAGi7bGItHmqjYxqAigKIz5fmeW6-4gIoRNtHhydQdekFuT09nUTo9Ojp-S2_j38MCcpwdkr_7VhGeA9Gr3vJ1elHy97vn8H7yHZG4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa2Tpp4QfymY4BB8BitcZzYFkKosFUd26oJMWlvJo6dMrSmgyQg_jX-Ou4SJ33a1JdJeWp8kes7n8_2d98R8iaKIhuJWAWhMFHApTOBZCkPEquEw5qQRmCC88ksmZ7xz-fx-Qb51-XCIKyy84mNo7bLDM_I95AJTwqI7-Ve7mERp_uTD1c_A6wghTetXTmN1kSO3N8_sH0r3x_ug67fMjY5-PppGvgKA0EWK1YFycjGlnHBnUqNNHkOjnwknMjzMJHJSCpnmVW5U0qMuLWSp4IrmYRGpEZhpRT47ibZErgrGpCtjwez0y8ryt-Qt4l4cRTIMFQeR9Siyxq2yosF-AyEl7GGN1SE1y2Om98RpXldCNwshZN75K6PYem4Nbr7ZMMVD8j2ib-lf0jm47paNlSwNEdACjU1UjnQ0s0XPtWpoBcFXUDgDs6WVpip5amzKUJWS1eVFBH5c5rSBvIYlLXBE6PuU2kFUf8jcnYrw_2YDIpl4Z4SKrjNwMYSrMiAd8fQLOcis2BezJqUDYnoRlJnnu0ci25c6g7W9kOvdKBRB3oEjwiHJOwlr1rGjzVkVKcs3WW0gg_WsCytIfuul_VRTxvNrCn9Gmyj7yiShU_Hxxp_QyYn3A_8hka7nelo76JKvZpQQ_Kqfw3OBW-M0sIta2iDJVwjFkt1U5sIVASBKYz5k9Ys--5gfAhbarZzcwdekm2Yy_r4cHb0jNzBf4en52GySwbVr9o9h7CvMi_8_KLk221P6f-DDWoJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+fiber+bundle+segmentation+in+massive+tractography+datasets+using+a+multi-subject+bundle+atlas&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Guevara%2C+P.&rft.au=Duclap%2C+D.&rft.au=Poupon%2C+C.&rft.au=Marrakchi-Kacem%2C+L.&rft.date=2012-07-16&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=61&rft.issue=4&rft.spage=1083&rft.epage=1099&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.02.071&rft.externalDocID=S105381191200256X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon