Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas

This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a multi-subject bundle atlas derived from a two-level intra-subject and inter-subject clustering strategy. This atlas is a model of the brain white ma...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 61; no. 4; pp. 1083 - 1099
Main Authors Guevara, P., Duclap, D., Poupon, C., Marrakchi-Kacem, L., Fillard, P., Le Bihan, D., Leboyer, M., Houenou, J., Mangin, J.-F.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 16.07.2012
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a multi-subject bundle atlas derived from a two-level intra-subject and inter-subject clustering strategy. This atlas is a model of the brain white matter organization, computed for a group of subjects, made up of a set of generic fiber bundles that can be detected in most of the population. Each atlas bundle corresponds to several inter-subject clusters manually labeled to account for subdivisions of the underlying pathways often presenting large variability across subjects. An atlas bundle is represented by the multi-subject list of the centroids of all intra-subject clusters in order to get a good sampling of the shape and localization variability. The atlas, composed of 36 known deep white matter bundles and 47 superficial white matter bundles in each hemisphere, was inferred from a first database of 12 brains. It was successfully used to segment the deep white matter bundles in a second database of 20 brains and most of the superficial white matter bundles in 10 subjects of the same database. [Display omitted] ► We propose an automatic and robust method for fiber bundle segmentation in massive tractography datasets. ► The method is based on a novel HARDI multi-subject human brain fiber bundle atlas, composed of 36 known deep white matter bundles. ► The atlas also contains 47 superficial white matter bundles in each hemisphere, included in a multisubject bundle atlas for the first time. ► The method considers the fiber shape, position and length information in the segmentation, leading to better results than ROI-based approaches. ► Results can be used for population studies where each generic bundle is analyzed separately.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2012.02.071