Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean–atmosphere hindcasts

The autumn and early winter atmospheric response to the record-low Arctic sea ice extent at the end of summer 2007 is examined in ensemble hindcasts with prescribed sea ice extent, made with the European Centre for Medium-Range Weather Forecasts state-of-the-art coupled ocean–atmosphere seasonal for...

Full description

Saved in:
Bibliographic Details
Published inClimate dynamics Vol. 38; no. 11-12; pp. 2437 - 2448
Main Authors Orsolini, Yvan J., Senan, Retish, Benestad, Rasmus E., Melsom, Arne
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.06.2012
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The autumn and early winter atmospheric response to the record-low Arctic sea ice extent at the end of summer 2007 is examined in ensemble hindcasts with prescribed sea ice extent, made with the European Centre for Medium-Range Weather Forecasts state-of-the-art coupled ocean–atmosphere seasonal forecast model. Robust, warm anomalies over the Pacific and Siberian sectors of the Arctic, as high as 10°C at the surface, are found in October and November. A regime change occurs by December, characterized by weaker temperatures anomalies extending through the troposphere. Geopotential anomalies extend from the surface up to the stratosphere, associated to deeper Aleutian and Icelandic Lows. While the upper-level jet is weakened and shifted southward over the continents, it is intensified over both oceanic sectors, especially over the Pacific Ocean. On the American and Eurasian continents, intensified surface Highs are associated with anomalous advection of cold (warm) polar air on their eastern (western) sides, bringing cooler temperatures along the Pacific coast of Asia and Northeastern North America. Transient eddy activity is reduced over Eurasia, intensified over the entrance and exit regions of the Pacific and Atlantic storm tracks, in broad qualitative agreement with the upper-level wind anomalies. Potential predictability calculations indicate a strong influence of sea ice upon surface temperatures over the Arctic in autumn, but also along the Pacific coast of Asia in December. When the observed sea ice extent from 2007 is prescribed throughout the autumn, a higher correlation of surface temperatures with meteorological re-analyses is found at high latitudes from October until mid-November. This further emphasises the relevance of sea ice for seasonal forecasting in the Arctic region, in the autumn.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0930-7575
1432-0894
DOI:10.1007/s00382-011-1169-z