Extreme Stretch Growth of Integrated Axons

Large animals can undergo enormous growth during development, suggesting that axons in nerves and white matter tracts rapidly expand as well. Because integrated axons have no growth cones to extend from, it has been postulated that mechanical forces may stimulate axon elongation matching the growth...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 24; no. 36; pp. 7978 - 7983
Main Authors Pfister, Bryan J, Iwata, Akira, Meaney, David F, Smith, Douglas H
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 08.09.2004
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Large animals can undergo enormous growth during development, suggesting that axons in nerves and white matter tracts rapidly expand as well. Because integrated axons have no growth cones to extend from, it has been postulated that mechanical forces may stimulate axon elongation matching the growth of the animal. However, this distinct form of rapid and sustained growth of integrated axons has never been demonstrated. Here, we used a microstepper motor system to evaluate the effects of escalating rates of stretch on integrated axon tracts over days to weeks in culture. We found that axon tracts could be stretch grown at rates of 8 mm/d and reach lengths of 10 cm without disconnection. Despite dynamic and long-term elongation, stretched axons increased in caliber by 35%, while the morphology and density of cytoskeletal constituents and organelles were maintained. These data provide the first evidence that mechanical stimuli can induce extreme "stretch growth" of integrated axon tracts, far exceeding any previously observed limits of axon growth.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.1974-04.2004