Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions

80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridg...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 10; no. 6; p. e0125814
Main Authors Hengl, Tomislav, Heuvelink, Gerard B. M., Kempen, Bas, Leenaars, Johan G. B., Walsh, Markus G., Shepherd, Keith D., Sila, Andrew, MacMillan, Robert A., Mendes de Jesus, Jorge, Tamene, Lulseged, Tondoh, Jérôme E.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 25.06.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data.
AbstractList 80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008–2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management—organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15–75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data.
80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data.80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data.
80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008–2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management—organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15–75% in Root Mean Squared Error ( RMSE ) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data.
Author Mendes de Jesus, Jorge
Walsh, Markus G.
Hengl, Tomislav
Leenaars, Johan G. B.
Tondoh, Jérôme E.
Shepherd, Keith D.
Heuvelink, Gerard B. M.
Kempen, Bas
MacMillan, Robert A.
Tamene, Lulseged
Sila, Andrew
AuthorAffiliation 2 The Earth Institute, Columbia University, USA / Selian Agricultural Research Inst., Arusha, Tanzania
3 World Agroforestry Centre, Nairobi, Kenya
4 LandMapper Environmental Solutions Inc., Edmonton, Canada
5 International Center for Tropical Agriculture, Lilongwe, Malawi
1 ISRIC—World Soil Information, Wageningen, the Netherlands
AuthorAffiliation_xml – name: 3 World Agroforestry Centre, Nairobi, Kenya
– name: 5 International Center for Tropical Agriculture, Lilongwe, Malawi
– name: 2 The Earth Institute, Columbia University, USA / Selian Agricultural Research Inst., Arusha, Tanzania
– name: 1 ISRIC—World Soil Information, Wageningen, the Netherlands
– name: 4 LandMapper Environmental Solutions Inc., Edmonton, Canada
Author_xml – sequence: 1
  givenname: Tomislav
  surname: Hengl
  fullname: Hengl, Tomislav
– sequence: 2
  givenname: Gerard B. M.
  surname: Heuvelink
  fullname: Heuvelink, Gerard B. M.
– sequence: 3
  givenname: Bas
  surname: Kempen
  fullname: Kempen, Bas
– sequence: 4
  givenname: Johan G. B.
  surname: Leenaars
  fullname: Leenaars, Johan G. B.
– sequence: 5
  givenname: Markus G.
  surname: Walsh
  fullname: Walsh, Markus G.
– sequence: 6
  givenname: Keith D.
  surname: Shepherd
  fullname: Shepherd, Keith D.
– sequence: 7
  givenname: Andrew
  surname: Sila
  fullname: Sila, Andrew
– sequence: 8
  givenname: Robert A.
  surname: MacMillan
  fullname: MacMillan, Robert A.
– sequence: 9
  givenname: Jorge
  surname: Mendes de Jesus
  fullname: Mendes de Jesus, Jorge
– sequence: 10
  givenname: Lulseged
  surname: Tamene
  fullname: Tamene, Lulseged
– sequence: 11
  givenname: Jérôme E.
  surname: Tondoh
  fullname: Tondoh, Jérôme E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26110833$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1v0zAUhiM0xD7gHyCwxA03LbbjuMkukKaKQaUh0AbX1ol9Ulw5dmYnk_bvcWmLtglxZev4Oa_f83FaHPngsSheMzpn5YJ92IQpenDzIYfnlPGqZuJZccKaks8kp-XRg_txcZrShtKqrKV8URxzyRity_KkCF9hGKxfk5tgHfkew4BxtJhI6MhFF60GAiPhFSU9ucYU3DTa4M_JNXgTenIZIqYxkRu79rbLtB_dPVn1Qwx3SJZTjOjHLIvG6m1ielk878AlfLU_z4qfl59-LL_Mrr59Xi0vrma6avg4E1BRMItKQ80YWwAANwKl4RS6FqvOtLw1gAuegc7QDoWUGhqGNS9NpUV5Vrzd6Q4uJLXvVVJMNozXVMomE6sdYQJs1BBtD_FeBbDqTyDEtYLcCu1QVVRSozUY2hohmrppsTQNr5FlHx2WWevj_rep7dHoXHQE90j08Yu3v9Q63Ckhas7E1u77vUAMt1Nuqept0ugceAzTzrfMQxY8o--eoP-u7s1DR3-tHCafgfMdoGNIKWKntB1hO6Ns0DrFqNqu2UFcbddM7dcsJ4snyQf9_6b9BmuK3E0
CitedBy_id crossref_primary_10_1007_s00267_023_01837_6
crossref_primary_10_1162_rest_a_01238
crossref_primary_10_1007_s40808_018_0499_9
crossref_primary_10_1002_ldr_4027
crossref_primary_10_1111_jbi_13221
crossref_primary_10_1007_s13593_020_00628_1
crossref_primary_10_1016_j_catena_2020_104940
crossref_primary_10_5194_hess_28_117_2024
crossref_primary_10_1016_j_ecolind_2024_112544
crossref_primary_10_3390_ijgi9100587
crossref_primary_10_1016_j_apgeog_2019_102129
crossref_primary_10_1016_j_geodrs_2020_e00334
crossref_primary_10_1016_j_ejrh_2022_101062
crossref_primary_10_5194_essd_13_1089_2021
crossref_primary_10_3390_rs15123203
crossref_primary_10_3390_land11081285
crossref_primary_10_1016_j_atech_2024_100591
crossref_primary_10_1016_j_geoderma_2021_115659
crossref_primary_10_1016_j_geomorph_2024_109485
crossref_primary_10_1038_s41467_021_26907_3
crossref_primary_10_1111_agec_12532
crossref_primary_10_3390_su16041468
crossref_primary_10_1016_j_atmosenv_2021_118620
crossref_primary_10_1016_j_foreco_2018_03_019
crossref_primary_10_3390_land12101841
crossref_primary_10_1016_j_geoderma_2016_01_034
crossref_primary_10_1016_j_rse_2019_04_016
crossref_primary_10_1016_j_jenvman_2023_119598
crossref_primary_10_1007_s10346_020_01392_9
crossref_primary_10_1016_j_geodrs_2017_06_002
crossref_primary_10_1016_j_catena_2020_104715
crossref_primary_10_1016_j_jhydrol_2020_125231
crossref_primary_10_1007_s00500_019_04648_2
crossref_primary_10_1080_00103624_2018_1432637
crossref_primary_10_5194_acp_21_4575_2021
crossref_primary_10_1016_j_ejrh_2024_101756
crossref_primary_10_3390_f13071055
crossref_primary_10_1007_s12145_025_01748_6
crossref_primary_10_1016_j_ejrh_2022_101152
crossref_primary_10_1016_j_geoderma_2017_02_022
crossref_primary_10_1016_j_geoderma_2022_115840
crossref_primary_10_1007_s10661_024_13173_1
crossref_primary_10_1016_j_envc_2024_100937
crossref_primary_10_1016_j_eja_2025_127524
crossref_primary_10_3390_app11219903
crossref_primary_10_3390_geosciences9040180
crossref_primary_10_3390_ijgi10080553
crossref_primary_10_3390_urbansci9030084
crossref_primary_10_1016_j_eja_2024_127374
crossref_primary_10_1088_2976_601X_ad7d13
crossref_primary_10_1007_s11119_023_10041_9
crossref_primary_10_1016_j_compag_2019_03_015
crossref_primary_10_1016_j_envpol_2019_113367
crossref_primary_10_1029_2023GB008086
crossref_primary_10_5194_acp_23_6487_2023
crossref_primary_10_1111_aje_12907
crossref_primary_10_3389_fgene_2021_723360
crossref_primary_10_1016_j_envc_2024_100922
crossref_primary_10_1111_nph_15254
crossref_primary_10_1016_j_scitotenv_2024_175476
crossref_primary_10_1080_00103624_2024_2419994
crossref_primary_10_1016_j_geodrs_2020_e00316
crossref_primary_10_1016_j_ejrh_2023_101341
crossref_primary_10_3390_ijerph15020243
crossref_primary_10_1007_s10113_017_1186_5
crossref_primary_10_1007_s10661_021_09543_8
crossref_primary_10_3390_rs16050785
crossref_primary_10_1016_j_jenvman_2021_113556
crossref_primary_10_1016_j_indic_2024_100498
crossref_primary_10_1002_agg2_20207
crossref_primary_10_1007_s11119_023_10099_5
crossref_primary_10_3389_fvets_2019_00327
crossref_primary_10_1016_j_catena_2022_106899
crossref_primary_10_1007_s11273_017_9558_7
crossref_primary_10_3390_ijgi9020102
crossref_primary_10_3390_su13020844
crossref_primary_10_3390_ijgi9040268
crossref_primary_10_1016_j_geoderma_2024_117007
crossref_primary_10_1007_s40808_024_02055_7
crossref_primary_10_1007_s11004_021_09946_w
crossref_primary_10_3390_rs12142332
crossref_primary_10_1038_s41598_018_21530_7
crossref_primary_10_1080_1343943X_2023_2241712
crossref_primary_10_1016_j_scitotenv_2018_03_324
crossref_primary_10_1016_j_geoderma_2020_114253
crossref_primary_10_1080_10106049_2019_1594394
crossref_primary_10_1145_2874309
crossref_primary_10_1016_j_geoderma_2016_07_012
crossref_primary_10_1016_j_geodrs_2021_e00411
crossref_primary_10_1016_j_geodrs_2020_e00256
crossref_primary_10_1017_S0014479721000302
crossref_primary_10_1016_j_rse_2018_04_047
crossref_primary_10_1016_j_geodrs_2016_04_002
crossref_primary_10_1016_j_geoderma_2020_114260
crossref_primary_10_1007_s10666_024_09972_y
crossref_primary_10_5194_essd_15_395_2023
crossref_primary_10_5194_essd_9_1_2017
crossref_primary_10_1002_ece3_7717
crossref_primary_10_1016_j_foreco_2021_119645
crossref_primary_10_1029_2023GB008016
crossref_primary_10_1016_j_geoderma_2019_05_031
crossref_primary_10_1016_j_geodrs_2020_e00260
crossref_primary_10_1080_14735903_2020_1824419
crossref_primary_10_3390_plants12071464
crossref_primary_10_1016_j_geoderma_2018_03_029
crossref_primary_10_1016_j_compag_2019_01_011
crossref_primary_10_3390_su11133569
crossref_primary_10_3389_fsufs_2023_1305799
crossref_primary_10_3389_fsufs_2019_00071
crossref_primary_10_1002_saj2_20525
crossref_primary_10_1016_j_geoderma_2020_114233
crossref_primary_10_3390_rs15123158
crossref_primary_10_1016_j_geoderma_2020_114237
crossref_primary_10_1016_j_catena_2019_104149
crossref_primary_10_3389_fsoil_2022_927452
crossref_primary_10_1007_s10653_024_02259_x
crossref_primary_10_1007_s11258_018_0795_5
crossref_primary_10_1007_s12145_022_00784_w
crossref_primary_10_3390_agriculture13010109
crossref_primary_10_1016_j_geoderma_2021_115402
crossref_primary_10_1016_j_scitotenv_2020_137078
crossref_primary_10_1016_j_scitotenv_2020_142661
crossref_primary_10_1111_ejss_13226
crossref_primary_10_1080_15481603_2025_2460513
crossref_primary_10_1371_journal_pone_0289286
crossref_primary_10_1111_ejss_13461
crossref_primary_10_1016_j_geodrs_2015_12_002
crossref_primary_10_3390_land12071295
crossref_primary_10_3390_rs16010091
crossref_primary_10_5194_hess_23_1113_2019
crossref_primary_10_1111_ecog_05703
crossref_primary_10_1016_j_aiig_2022_12_002
crossref_primary_10_1002_ldr_3582
crossref_primary_10_3390_rs13234825
crossref_primary_10_1016_j_scitotenv_2016_07_066
crossref_primary_10_1016_j_geodrs_2024_e00763
crossref_primary_10_1016_j_geodrs_2024_e00766
crossref_primary_10_1017_S0029665120006904
crossref_primary_10_1007_s10661_024_12393_9
crossref_primary_10_1007_s12145_025_01833_w
crossref_primary_10_1111_sum_12753
crossref_primary_10_1111_sum_12874
crossref_primary_10_2139_ssrn_4045839
crossref_primary_10_3390_rs12244073
crossref_primary_10_1080_17445647_2019_1690595
crossref_primary_10_2139_ssrn_4128965
crossref_primary_10_1016_j_ecolind_2021_108274
crossref_primary_10_3390_ijgi11040242
crossref_primary_10_1007_s12517_023_11670_0
crossref_primary_10_1016_j_geoderma_2022_116192
crossref_primary_10_1080_17445647_2020_1761061
crossref_primary_10_1016_j_geoderma_2020_114452
crossref_primary_10_1111_mec_15754
crossref_primary_10_1016_j_ecolind_2020_106801
crossref_primary_10_1016_j_scitotenv_2023_167989
crossref_primary_10_1016_j_geoderma_2020_114575
crossref_primary_10_1016_j_fcr_2021_108393
crossref_primary_10_3390_agronomy12071653
crossref_primary_10_1175_JHM_D_19_0214_1
crossref_primary_10_1002_ece3_4919
crossref_primary_10_1016_j_geodrs_2020_e00299
crossref_primary_10_1016_j_agwat_2022_108124
crossref_primary_10_1111_gcb_16418
crossref_primary_10_1016_j_geodrs_2021_e00439
crossref_primary_10_2139_ssrn_4093525
crossref_primary_10_1038_s41586_020_2824_5
crossref_primary_10_1016_j_agsy_2020_102819
crossref_primary_10_1016_j_geoderma_2018_07_052
crossref_primary_10_1016_j_pce_2023_103387
crossref_primary_10_1016_j_apgeog_2017_05_010
crossref_primary_10_1080_10106049_2021_1959656
crossref_primary_10_1016_j_agee_2020_107165
crossref_primary_10_1073_pnas_2011515117
crossref_primary_10_1016_j_aiig_2022_02_001
crossref_primary_10_1016_j_scitotenv_2023_167855
crossref_primary_10_3897_oneeco_7_e76410
crossref_primary_10_1007_s10311_018_0753_4
crossref_primary_10_1016_j_worlddev_2022_106042
crossref_primary_10_1016_j_agsy_2022_103588
crossref_primary_10_1016_j_geodrs_2021_e00444
crossref_primary_10_1080_00103624_2023_2253840
crossref_primary_10_3390_agronomy8120291
crossref_primary_10_3390_hydrology7010008
crossref_primary_10_3390_su132111739
crossref_primary_10_1016_j_geodrs_2021_e00440
crossref_primary_10_1016_j_uclim_2017_09_001
crossref_primary_10_3389_fsufs_2021_675382
crossref_primary_10_1016_j_jag_2019_101905
crossref_primary_10_3390_s24196287
crossref_primary_10_1016_j_acags_2019_100001
crossref_primary_10_1002_agj2_21223
crossref_primary_10_1016_j_geoderma_2021_114998
crossref_primary_10_1371_journal_pone_0210766
crossref_primary_10_30516_bilgesci_1532645
crossref_primary_10_1590_0001_3765202220200411
crossref_primary_10_1016_j_catena_2021_105376
crossref_primary_10_1007_s10705_021_10174_1
crossref_primary_10_1016_j_heliyon_2023_e13965
crossref_primary_10_1186_s13021_021_00195_2
crossref_primary_10_1016_j_geodrs_2020_e00275
crossref_primary_10_1016_j_geoderma_2015_08_035
crossref_primary_10_1016_j_geoderma_2023_116683
crossref_primary_10_1016_j_agsy_2020_102918
crossref_primary_10_1080_19475705_2020_1785555
crossref_primary_10_3390_rs14020315
crossref_primary_10_1016_j_grj_2017_06_001
crossref_primary_10_3390_w9020147
crossref_primary_10_1016_j_envsoft_2022_105447
crossref_primary_10_3390_s16111950
crossref_primary_10_1016_j_jafrearsci_2018_06_028
crossref_primary_10_1016_j_envsoft_2023_105633
crossref_primary_10_1016_j_foreco_2021_119226
crossref_primary_10_1016_j_foreco_2024_121927
crossref_primary_10_1590_1413_7054202448013824
crossref_primary_10_1016_j_jaridenv_2016_12_006
crossref_primary_10_3390_rs16111871
crossref_primary_10_1016_j_geoderma_2017_04_018
crossref_primary_10_1016_j_fcr_2022_108548
crossref_primary_10_1016_j_jenvman_2021_112509
crossref_primary_10_1016_j_geoderma_2019_07_005
crossref_primary_10_1111_sum_12833
crossref_primary_10_1016_j_scib_2021_10_013
crossref_primary_10_1039_D0AY01389G
crossref_primary_10_3390_w10111549
crossref_primary_10_1111_gcb_16551
crossref_primary_10_3390_rs8080614
crossref_primary_10_1016_j_aiig_2021_01_001
crossref_primary_10_1016_j_jafrearsci_2020_103871
crossref_primary_10_1016_j_envdev_2016_06_001
crossref_primary_10_1016_j_scitotenv_2022_158707
crossref_primary_10_1016_j_geoderma_2024_116798
crossref_primary_10_1111_mec_13891
crossref_primary_10_1093_erae_jbab030
crossref_primary_10_1016_j_ecolind_2024_112294
crossref_primary_10_1134_S1064229323601762
crossref_primary_10_1016_j_chemosphere_2021_129611
crossref_primary_10_1016_j_scitotenv_2021_149959
crossref_primary_10_5194_hess_23_4603_2019
crossref_primary_10_1016_j_still_2021_105114
crossref_primary_10_1016_j_geoderma_2017_10_048
crossref_primary_10_1007_s12665_022_10444_3
crossref_primary_10_5194_soil_10_189_2024
crossref_primary_10_1088_1748_9326_ac0567
crossref_primary_10_1007_s10705_020_10079_5
crossref_primary_10_3390_ijerph182111691
crossref_primary_10_3390_su141811710
crossref_primary_10_1111_csp2_479
crossref_primary_10_1016_j_catena_2022_106404
crossref_primary_10_1111_sum_12900
crossref_primary_10_1590_1413_7054201943015619
crossref_primary_10_1016_j_geodrs_2016_12_002
crossref_primary_10_3390_rs14236017
crossref_primary_10_3390_rs13051025
crossref_primary_10_1016_j_gfs_2017_03_003
crossref_primary_10_1590_2179_8087_061617
crossref_primary_10_1016_j_geomorph_2017_04_038
crossref_primary_10_3390_rs16071128
crossref_primary_10_1016_j_measurement_2022_111706
crossref_primary_10_7717_peerj_cs_1109
crossref_primary_10_1016_j_heliyon_2024_e33448
crossref_primary_10_1007_s11600_022_00956_8
crossref_primary_10_3390_app13095249
crossref_primary_10_1016_j_ecoser_2021_101249
crossref_primary_10_1016_j_geodrs_2021_e00366
crossref_primary_10_3390_land9040125
crossref_primary_10_1016_j_catena_2023_106932
crossref_primary_10_1088_1748_9326_aaac84
crossref_primary_10_1007_s40808_023_01788_1
crossref_primary_10_1016_j_agsy_2022_103429
crossref_primary_10_1016_j_jhydrol_2022_127805
crossref_primary_10_1016_j_ecoinf_2023_102290
crossref_primary_10_1016_j_compag_2022_107533
crossref_primary_10_1016_j_geoderma_2018_11_028
crossref_primary_10_1016_j_geodrs_2023_e00745
crossref_primary_10_5194_hess_26_4447_2022
crossref_primary_10_1016_j_geoderma_2018_11_024
crossref_primary_10_1016_j_geodrs_2017_07_005
crossref_primary_10_3390_rs12071197
crossref_primary_10_3390_rs15051338
crossref_primary_10_1016_j_scitotenv_2019_136165
crossref_primary_10_1080_02571862_2019_1570566
crossref_primary_10_1016_j_eja_2017_02_002
crossref_primary_10_1186_s40663_016_0077_4
crossref_primary_10_1590_1678_992x_2017_0300
crossref_primary_10_1111_sum_12925
crossref_primary_10_1002_2015GB005239
crossref_primary_10_1007_s10705_018_9958_y
crossref_primary_10_1007_s12517_022_10799_8
crossref_primary_10_3390_rs15215228
crossref_primary_10_1093_g3journal_jkad128
crossref_primary_10_3390_app9102048
crossref_primary_10_1016_j_envpol_2017_12_070
crossref_primary_10_1016_j_scitotenv_2021_149505
crossref_primary_10_36783_18069657rbcs20210084
crossref_primary_10_1007_s10533_021_00755_1
crossref_primary_10_1111_agec_12796
crossref_primary_10_5194_soil_4_173_2018
crossref_primary_10_3390_rs12101687
crossref_primary_10_1016_j_agee_2017_11_022
crossref_primary_10_1007_s11053_021_09860_2
crossref_primary_10_1007_s11119_016_9439_8
crossref_primary_10_1016_j_catena_2021_105343
crossref_primary_10_1111_2041_210X_13423
crossref_primary_10_1016_j_geodrs_2022_e00563
crossref_primary_10_1007_s13157_023_01705_3
crossref_primary_10_1016_j_geodrs_2022_e00561
crossref_primary_10_1186_s13717_022_00411_y
crossref_primary_10_3390_s22093119
crossref_primary_10_1007_s10661_021_08947_w
crossref_primary_10_3389_ffgc_2023_1209232
crossref_primary_10_3390_land12050983
crossref_primary_10_3390_rs16203781
crossref_primary_10_1016_j_rsma_2024_103655
crossref_primary_10_1111_risa_13359
crossref_primary_10_1080_13658816_2022_2131789
crossref_primary_10_3390_land12040819
crossref_primary_10_1016_j_geoderma_2017_06_016
crossref_primary_10_7831_ras_11_0_93
crossref_primary_10_1016_j_rse_2016_03_028
crossref_primary_10_1371_journal_pntd_0010227
crossref_primary_10_5194_essd_17_517_2025
crossref_primary_10_1109_JSTARS_2020_2974896
crossref_primary_10_1016_j_catena_2018_04_013
crossref_primary_10_1016_j_apgeog_2018_05_003
crossref_primary_10_1016_j_catena_2017_10_002
crossref_primary_10_1002_ajb2_16461
crossref_primary_10_1126_science_aav0564
crossref_primary_10_1016_j_geoderma_2024_116912
crossref_primary_10_1016_j_geodrs_2023_e00731
crossref_primary_10_3390_w12102763
crossref_primary_10_1002_saj2_20263
crossref_primary_10_1007_s10584_021_03191_0
crossref_primary_10_1007_s12145_024_01298_3
crossref_primary_10_1007_s10668_019_00557_4
crossref_primary_10_4018_IJAGR_2019070104
crossref_primary_10_1016_j_compag_2020_105217
crossref_primary_10_1038_s41558_024_02201_0
crossref_primary_10_1016_j_geoderma_2023_116740
crossref_primary_10_1016_j_geodrs_2023_e00713
crossref_primary_10_1016_j_landusepol_2017_06_025
crossref_primary_10_1016_j_agsy_2019_02_013
crossref_primary_10_1016_j_agwat_2021_106758
crossref_primary_10_1016_j_fcr_2020_107987
crossref_primary_10_1016_j_geodrs_2022_e00578
crossref_primary_10_1038_s41561_018_0092_x
crossref_primary_10_1016_j_geoderma_2016_04_019
crossref_primary_10_1016_j_geodrs_2017_03_002
crossref_primary_10_3390_ijgi6090283
crossref_primary_10_3390_su122410274
crossref_primary_10_1080_27658511_2024_2333631
crossref_primary_10_1016_j_apm_2019_12_016
crossref_primary_10_2139_ssrn_4863781
crossref_primary_10_5194_hess_23_2615_2019
crossref_primary_10_1021_acs_est_9b00504
crossref_primary_10_1016_j_compag_2024_108831
crossref_primary_10_1016_j_geoderma_2016_12_001
crossref_primary_10_1007_s40808_025_02331_0
crossref_primary_10_1590_18069657rbcs20170183
crossref_primary_10_1016_j_gfs_2018_12_006
crossref_primary_10_3390_agronomy15030533
crossref_primary_10_1038_s41893_022_00861_4
crossref_primary_10_5194_bg_18_4445_2021
crossref_primary_10_1016_j_geoderma_2019_114139
crossref_primary_10_3390_rs70809563
crossref_primary_10_1016_j_geoderma_2019_114132
crossref_primary_10_1038_s41598_018_28244_w
crossref_primary_10_3390_w15193396
crossref_primary_10_1016_j_ecoinf_2024_102875
crossref_primary_10_3390_su11010048
crossref_primary_10_5194_soil_9_351_2023
crossref_primary_10_1111_ddi_13152
crossref_primary_10_1029_2023EF004096
crossref_primary_10_3390_app11125376
crossref_primary_10_1016_j_jhydrol_2018_03_042
crossref_primary_10_3233_JIFS_240493
crossref_primary_10_1016_j_scitotenv_2020_140702
crossref_primary_10_1016_j_geoderma_2022_116265
crossref_primary_10_1109_JSTARS_2019_2902375
crossref_primary_10_3390_rs13245115
crossref_primary_10_1002_ldr_3826
crossref_primary_10_3390_land12050976
crossref_primary_10_1142_S0116110524500021
crossref_primary_10_5194_hess_26_71_2022
crossref_primary_10_1016_j_catena_2023_107364
crossref_primary_10_2136_sssaj2016_12_0421
crossref_primary_10_1016_j_agsy_2023_103667
crossref_primary_10_1002_met_1959
crossref_primary_10_1002_esp_4301
crossref_primary_10_1007_s10705_017_9887_1
crossref_primary_10_1016_j_ecolind_2022_109443
crossref_primary_10_1134_S1064229322602645
crossref_primary_10_1016_j_geoderma_2024_116953
crossref_primary_10_1002_eap_1505
crossref_primary_10_1016_j_geoderma_2018_02_046
crossref_primary_10_1007_s10113_022_02008_9
crossref_primary_10_1016_j_agsy_2021_103095
crossref_primary_10_31545_intagr_188506
crossref_primary_10_17491_jgsi_2024_173873
crossref_primary_10_1016_j_geodrs_2018_e00195
crossref_primary_10_1007_s13593_023_00872_1
crossref_primary_10_1016_j_jag_2019_02_004
crossref_primary_10_1016_j_earscirev_2019_103028
crossref_primary_10_1016_j_jia_2022_08_054
crossref_primary_10_1080_02571862_2016_1166400
crossref_primary_10_1016_j_foreco_2019_117575
crossref_primary_10_1080_17538947_2016_1265017
crossref_primary_10_1002_ehs2_1209
crossref_primary_10_1080_10106049_2021_1996639
crossref_primary_10_1080_15481603_2020_1744250
crossref_primary_10_1016_j_geoderma_2019_114067
crossref_primary_10_1007_s10661_021_09502_3
crossref_primary_10_1007_s12517_017_3345_x
crossref_primary_10_3390_agronomy14071417
crossref_primary_10_1371_journal_pone_0170478
crossref_primary_10_1016_j_ocecoaman_2020_105145
crossref_primary_10_1016_j_scitotenv_2020_136511
crossref_primary_10_1016_j_soisec_2021_100018
crossref_primary_10_1007_s12524_017_0738_y
crossref_primary_10_1007_s10661_023_12189_3
crossref_primary_10_1080_10618600_2020_1844215
crossref_primary_10_1080_10106049_2018_1464601
crossref_primary_10_1007_s12665_024_12050_x
crossref_primary_10_1038_s41598_018_36587_7
crossref_primary_10_1080_10106049_2021_2002426
crossref_primary_10_1038_s41598_022_09153_5
crossref_primary_10_3390_rs15174264
crossref_primary_10_1016_j_agsy_2020_102828
crossref_primary_10_3389_fsoil_2022_890437
crossref_primary_10_1016_j_heliyon_2023_e22639
crossref_primary_10_5194_bg_14_3239_2017
crossref_primary_10_1016_j_eja_2016_03_007
crossref_primary_10_3390_rs16224304
crossref_primary_10_1016_j_ecss_2023_108512
crossref_primary_10_1016_j_geoderma_2016_04_027
crossref_primary_10_1016_j_ecolmodel_2021_109501
crossref_primary_10_1080_19475705_2021_1906759
crossref_primary_10_3390_rs11242905
crossref_primary_10_1016_j_atmosenv_2016_12_057
crossref_primary_10_1016_j_gecco_2022_e02274
crossref_primary_10_3390_agronomy13041031
crossref_primary_10_1016_j_catena_2025_108843
crossref_primary_10_3390_su15043337
crossref_primary_10_1073_pnas_2013771117
crossref_primary_10_3390_land12010032
crossref_primary_10_1590_0001_3765201820180423
crossref_primary_10_3390_ijerph15122680
crossref_primary_10_1080_19475705_2024_2426682
crossref_primary_10_3390_s22186890
crossref_primary_10_1016_j_geoderma_2019_114061
crossref_primary_10_1007_s10457_024_01025_3
crossref_primary_10_1017_S1742170519000504
crossref_primary_10_1080_19475683_2024_2324398
crossref_primary_10_1080_24749508_2023_2167632
crossref_primary_10_7717_peerj_11685
crossref_primary_10_1007_s12665_024_11834_5
crossref_primary_10_1016_j_jhydrol_2022_128753
crossref_primary_10_1016_j_geoderma_2021_115079
crossref_primary_10_1007_s10661_023_11126_8
crossref_primary_10_1016_j_still_2020_104589
crossref_primary_10_1371_journal_pone_0239149
crossref_primary_10_1016_j_still_2025_106530
crossref_primary_10_1016_S2095_3119_19_62857_1
crossref_primary_10_3390_ijgi10040243
crossref_primary_10_3390_su15086495
crossref_primary_10_1016_j_aiig_2024_100093
crossref_primary_10_1088_1748_9326_ab3186
crossref_primary_10_3390_f8020052
crossref_primary_10_1007_s11600_021_00691_6
crossref_primary_10_1016_j_envres_2021_110905
crossref_primary_10_1016_j_geoderma_2023_116405
crossref_primary_10_1016_j_geoderma_2024_116944
crossref_primary_10_1111_nph_16702
crossref_primary_10_3389_fagro_2024_1376110
crossref_primary_10_1016_j_rsase_2021_100498
crossref_primary_10_5194_piahs_374_123_2016
crossref_primary_10_1016_j_worlddev_2017_12_009
crossref_primary_10_3390_rs14215503
crossref_primary_10_7717_peerj_5518
crossref_primary_10_1007_s12145_023_01160_y
crossref_primary_10_1016_j_geoderma_2015_12_003
crossref_primary_10_1371_journal_pone_0270176
crossref_primary_10_1080_02723646_2018_1541706
crossref_primary_10_1016_j_envc_2023_100714
crossref_primary_10_1016_j_landusepol_2017_04_028
crossref_primary_10_1016_j_jag_2023_103364
crossref_primary_10_11646_zootaxa_5512_1_1
crossref_primary_10_5194_soil_5_137_2019
crossref_primary_10_1111_ecog_05730
crossref_primary_10_1016_j_catena_2018_10_005
crossref_primary_10_1029_2021GB007213
crossref_primary_10_3390_ijerph18052775
crossref_primary_10_2139_ssrn_3928321
crossref_primary_10_3390_f10111023
crossref_primary_10_1016_j_geoderma_2019_01_049
crossref_primary_10_1016_j_scitotenv_2016_11_078
crossref_primary_10_1002_ldr_5194
crossref_primary_10_1016_j_scitotenv_2020_137814
crossref_primary_10_1016_j_gecco_2021_e01527
crossref_primary_10_1038_s41598_024_83551_9
crossref_primary_10_3389_fmars_2016_00213
crossref_primary_10_1007_s40808_023_01890_4
crossref_primary_10_1002_saj2_20559
crossref_primary_10_1016_j_apgeog_2019_102086
crossref_primary_10_3390_agronomy13030632
crossref_primary_10_1007_s11368_024_03836_4
crossref_primary_10_5897_AJAR2023_16385
crossref_primary_10_1080_27669645_2024_2400432
crossref_primary_10_1016_j_ejrs_2022_01_014
crossref_primary_10_1016_j_rsase_2023_100990
crossref_primary_10_1016_j_agsy_2017_03_004
crossref_primary_10_5194_hess_24_2505_2020
crossref_primary_10_1016_j_geoderma_2015_12_025
crossref_primary_10_1016_j_geoderma_2019_01_018
crossref_primary_10_5194_bg_15_1663_2018
crossref_primary_10_3390_f7110281
crossref_primary_10_1016_j_geoderma_2021_115042
crossref_primary_10_1038_s43247_024_01731_x
crossref_primary_10_1016_j_catena_2022_106381
crossref_primary_10_1134_S1064229320090136
crossref_primary_10_1007_s10705_017_9827_0
crossref_primary_10_1007_s12517_022_09629_8
crossref_primary_10_1016_j_catena_2022_106024
crossref_primary_10_1371_journal_pone_0186025
crossref_primary_10_1590_1413_70542017416010317
crossref_primary_10_1016_j_eja_2024_127092
crossref_primary_10_1007_s10705_017_9870_x
crossref_primary_10_1016_j_envc_2021_100260
crossref_primary_10_1016_j_catena_2018_03_023
crossref_primary_10_1007_s10584_020_02924_x
crossref_primary_10_1016_j_geodrs_2017_04_003
crossref_primary_10_1080_19475683_2020_1788639
crossref_primary_10_1016_j_scitotenv_2019_06_320
crossref_primary_10_3390_f12111575
crossref_primary_10_1016_j_ejrh_2019_01_003
crossref_primary_10_1016_S2095_3119_18_62071_4
crossref_primary_10_1080_07038992_2022_2056435
crossref_primary_10_3390_soilsystems4020032
crossref_primary_10_1016_j_geoderma_2017_12_002
crossref_primary_10_1016_j_geoderma_2019_114094
crossref_primary_10_1016_j_apgeog_2020_102299
crossref_primary_10_1111_gcb_17089
crossref_primary_10_1029_2018WR023939
crossref_primary_10_1016_j_catena_2022_106499
crossref_primary_10_1016_j_catena_2023_107643
crossref_primary_10_1080_17538947_2023_2210314
crossref_primary_10_2134_age2018_04_0008
crossref_primary_10_1002_2016JG003488
crossref_primary_10_3390_cli8090096
crossref_primary_10_1016_j_scitotenv_2018_12_248
crossref_primary_10_3390_soilsystems3020033
crossref_primary_10_1016_j_catena_2018_11_010
crossref_primary_10_1016_j_geoderma_2021_115108
crossref_primary_10_36783_18069657rbcs20230121
crossref_primary_10_3390_agronomy14040693
crossref_primary_10_1016_j_geoderma_2019_01_004
crossref_primary_10_3390_rs13234772
crossref_primary_10_1016_j_envsoft_2019_05_012
crossref_primary_10_3390_cli8090097
crossref_primary_10_3897_VCS_99050
crossref_primary_10_1007_s10584_025_03878_8
crossref_primary_10_1002_jpln_202400148
crossref_primary_10_1016_j_catena_2017_03_020
crossref_primary_10_1016_j_geoderma_2019_01_007
crossref_primary_10_3390_rs13091682
crossref_primary_10_1007_s10584_024_03702_9
crossref_primary_10_1017_S1742170520000034
crossref_primary_10_1007_s11442_023_2142_6
crossref_primary_10_1016_j_spasta_2022_100639
crossref_primary_10_1007_s12665_025_12129_z
crossref_primary_10_1371_journal_pone_0230990
crossref_primary_10_3390_jmse11040785
crossref_primary_10_36783_18069657rbcs20230130
crossref_primary_10_3390_land9010015
crossref_primary_10_1016_j_ecolind_2019_106033
crossref_primary_10_1371_journal_pone_0241637
crossref_primary_10_1016_j_geodrs_2020_e00300
crossref_primary_10_1016_j_jclepro_2023_138544
crossref_primary_10_1080_20964471_2018_1472392
crossref_primary_10_3390_agronomy13030781
crossref_primary_10_3390_su12010050
crossref_primary_10_1007_s10661_021_08946_x
crossref_primary_10_1080_00103624_2018_1448862
crossref_primary_10_1371_journal_pone_0229509
crossref_primary_10_1002_saj2_20487
crossref_primary_10_3390_su10051610
crossref_primary_10_1016_j_spasta_2018_10_001
crossref_primary_10_1016_j_apgeog_2018_02_008
crossref_primary_10_1016_j_geoderma_2024_117067
crossref_primary_10_1016_j_geoderma_2018_09_006
crossref_primary_10_1016_j_ecolind_2018_01_049
crossref_primary_10_1016_j_geoderma_2018_09_008
crossref_primary_10_3390_ijerph16193523
crossref_primary_10_1016_j_fcr_2020_107963
crossref_primary_10_3390_atmos11101124
crossref_primary_10_1016_j_catena_2023_107677
crossref_primary_10_1002_ldr_3075
crossref_primary_10_19047_0136_1694_2018_95_3_23
crossref_primary_10_3390_geosciences10080287
crossref_primary_10_3390_rs16213939
crossref_primary_10_1080_00103624_2025_2449946
crossref_primary_10_1016_j_still_2019_104410
crossref_primary_10_1016_j_geoderma_2016_12_017
crossref_primary_10_1371_journal_pone_0169748
crossref_primary_10_1016_j_jappgeo_2023_104944
crossref_primary_10_1016_j_geoderma_2022_115773
crossref_primary_10_1080_10095020_2025_2454523
crossref_primary_10_5194_essd_16_2941_2024
crossref_primary_10_1016_j_foreco_2020_118557
crossref_primary_10_1111_aje_13350
crossref_primary_10_1016_j_jclepro_2023_139739
crossref_primary_10_1080_23328940_2020_1737479
crossref_primary_10_1016_j_geoderma_2021_115117
crossref_primary_10_4000_geomorphologie_16744
crossref_primary_10_1080_15324982_2024_2317399
crossref_primary_10_1007_s11004_021_09989_z
crossref_primary_10_1016_j_geoderma_2018_09_011
crossref_primary_10_1098_rstb_2016_0165
crossref_primary_10_1007_s10653_019_00499_w
Cites_doi 10.1016/j.cageo.2010.03.019
10.1016/j.agsy.2014.09.002
10.1186/1471-2105-9-319
10.1111/j.1365-2389.2011.01364.x
10.1016/j.geoderma.2004.11.012
10.1007/978-1-4614-6849-3
10.1037/a0016973
10.1016/j.advwatres.2009.10.008
10.1016/j.geoderma.2009.10.007
10.1016/j.jag.2012.02.005
10.1016/j.cageo.2007.05.001
10.1038/466558a
10.1255/jnirs.716
10.1016/j.ecolmodel.2005.05.021
10.1016/j.geoderma.2012.05.026
10.2136/sssaj2011.0025
10.1126/science.1244693
10.1201/b16500-13
10.1016/j.geoderma.2013.07.007
10.1038/514434c
10.1371/journal.pone.0105992
10.1016/j.asr.2004.03.012
10.18637/jss.v063.i12
10.1080/17538947.2013.786146
10.1016/S0924-2716(02)00124-7
10.1111/gcb.12632
10.1016/j.geoderma.2014.06.032
10.32614/RJ-2009-004
10.1126/science.1175084
10.1023/A:1010933404324
ContentType Journal Article
Copyright 2015 Hengl et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2015 Hengl et al 2015 Hengl et al
Copyright_xml – notice: 2015 Hengl et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2015 Hengl et al 2015 Hengl et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0125814
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
ProQuest Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Proquest Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database (subscripiton)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Agriculture
DocumentTitleAlternate Mapping Soil Properties of Africa at 250 m Resolution
EISSN 1932-6203
ExternalDocumentID 1691280669
oai_doaj_org_article_5060dccad0bd44989be3d928e1db2fe3
PMC4482144
3726800021
26110833
10_1371_journal_pone_0125814
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations New York
Netherlands
Kenya
United States--US
Africa
GeographicLocations_xml – name: New York
– name: Netherlands
– name: Africa
– name: United States--US
– name: Kenya
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c592t-4a50ad75ca81117aaa2d4e6d20afbe5fdb2bdae72ca8fd0fe466ca91e823d5c43
IEDL.DBID 7X7
ISSN 1932-6203
IngestDate Fri Nov 26 17:14:00 EST 2021
Wed Aug 27 01:29:15 EDT 2025
Thu Aug 21 18:17:41 EDT 2025
Fri Jul 11 12:44:06 EDT 2025
Fri Jul 25 10:23:19 EDT 2025
Thu Apr 03 07:08:25 EDT 2025
Thu Apr 24 22:50:19 EDT 2025
Tue Jul 01 01:37:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c592t-4a50ad75ca81117aaa2d4e6d20afbe5fdb2bdae72ca8fd0fe466ca91e823d5c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: R. A. MacMillan is owner and retired principal of LandMapper Environmental Solutions Inc. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.
Conceived and designed the experiments: TH GH BK MW KS. Performed the experiments: MW KS AS LT JT. Analyzed the data: TH GH BK JJ AS RM. Contributed reagents/materials/analysis tools: JL MW KS AS LT JT. Wrote the paper: TH GH RM MW.
OpenAccessLink https://www.proquest.com/docview/1691280669?pq-origsite=%requestingapplication%
PMID 26110833
PQID 1691280669
PQPubID 1436336
ParticipantIDs plos_journals_1691280669
doaj_primary_oai_doaj_org_article_5060dccad0bd44989be3d928e1db2fe3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4482144
proquest_miscellaneous_1691601242
proquest_journals_1691280669
pubmed_primary_26110833
crossref_citationtrail_10_1371_journal_pone_0125814
crossref_primary_10_1371_journal_pone_0125814
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-25
PublicationDateYYYYMMDD 2015-06-25
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2015
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References (ref5) 2014
R Christensen (ref34) 2001
ref11
ref10
AB McBratney (ref8) 2011; vol. 37
MC Hansen (ref13) 2013; 342
JL Boettinger (ref22) 2010; vol. 2
ref19
DJ Brus (ref52) 2011; 62
T Hengl (ref51) 2013; 22
T Hengl (ref33) 2007; 33
J Böhner (ref44) 2008; vol. 19
KD Shepherd (ref53) 2015; 132
S Ahmad (ref38) 2010; 33
PJ Durana (ref50) 2008
IOA Odeh (ref32) 1995; 67
ref48
O Dewitte (ref6) 2013; 211–212
ref43
L Breiman (ref36) 2001; 45
D Wysocki (ref54) 2005; 126
A Statnikov (ref39) 2008; 9
ref9
T Hengl (ref21) 2014; 9
D de Brogniez (ref20) 2014
ref40
NP Odgers (ref17) 2012; 189
KD Shepherd (ref23) 2007; 15
R Bivand (ref30) 2013
E Van Ranst (ref3) 2010; 56
A Liaw (ref45) 2002; 2
T Vågen (ref41) 2010
J Knaus (ref47) 2009; 1
B Rabus (ref26) 2003; 57
S Grunwald (ref16) 2011; 75
J Sachs (ref2) 2010; 466
EN Bui (ref7) 2006; 191
(ref4) 2014
PE Brown (ref28) 2015; 63
MG Walsh (ref42) 2006
BP Malone (ref46) 2009; 154
A Savtchenko (ref25) 2004; 34
N Mansuy (ref18) 2014; 235–236
Sanchez (ref12) 2009; 325
M Kuhn (ref31) 2013
BL Henderson (ref49) 2004; 124
C Jun (ref15) 2014; 514
ref29
TJ Hastie (ref35) 2009
JO Sexton (ref14) 2013; 6
C Strobl (ref37) 2009; 14
(ref1) 2002
E Pebesma (ref27) 2011; 37
M Nocita (ref24) 2014; 21
24233722 - Science. 2013 Nov 15;342(6160):850-3
18647401 - BMC Bioinformatics. 2008;9:319
25341776 - Nature. 2014 Oct 23;514(7523):434
20671691 - Nature. 2010 Jul 29;466(7306):558-60
19661405 - Science. 2009 Aug 7;325(5941):680-1
19968396 - Psychol Methods. 2009 Dec;14(4):323-48
25171179 - PLoS One. 2014;9(8):e105992
24832363 - Glob Chang Biol. 2015 Jan;21(1):10-1
References_xml – volume: 37
  start-page: 343
  issue: 3
  year: 2011
  ident: ref27
  article-title: INTAMAP: The design and implementation of an interoperable automated interpolation web service
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2010.03.019
– volume: 132
  start-page: 93
  year: 2015
  ident: ref53
  article-title: Land health surveillance and response: A framework for evidence-informed land management
  publication-title: Agricultural Systems
  doi: 10.1016/j.agsy.2014.09.002
– volume: 9
  start-page: 319
  issue: 1
  year: 2008
  ident: ref39
  article-title: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-319
– ident: ref43
– volume: vol. 2
  year: 2010
  ident: ref22
  article-title: Digital Soil Mapping: Bridging Research, Environmental Application, and Operation.
– volume: 62
  start-page: 394
  issue: 3
  year: 2011
  ident: ref52
  article-title: Sampling for validation of digital soil maps
  publication-title: European Journal of Soil Science
  doi: 10.1111/j.1365-2389.2011.01364.x
– volume: 126
  start-page: 167
  year: 2005
  ident: ref54
  article-title: Soil surveys: A window to the subsurface
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.11.012
– year: 2013
  ident: ref31
  article-title: Applied predictive modeling
  doi: 10.1007/978-1-4614-6849-3
– year: 2014
  ident: ref20
  article-title: A map of the topsoil organic carbon content of Europe generated by a generalized additive model
  publication-title: European Journal of Soil Science
– year: 2010
  ident: ref41
  article-title: Africa Soil Information Service (AfSIS)
– year: 2014
  ident: ref5
  article-title: No Ordinary Matter: Conserving, Restoring and Enhancing Africa’s soils
– volume: 14
  start-page: 323
  issue: 4
  year: 2009
  ident: ref37
  article-title: An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests
  publication-title: Psychological methods
  doi: 10.1037/a0016973
– ident: ref9
– volume: 33
  start-page: 69
  issue: 1
  year: 2010
  ident: ref38
  article-title: Estimating soil moisture using remote sensing data: A machine learning approach
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2009.10.008
– year: 2002
  ident: ref1
  article-title: World agriculture: towards 2015/2030
– ident: ref11
– volume: vol. 19
  year: 2008
  ident: ref44
  article-title: SAGA—Seconds Out
– volume: 154
  start-page: 138
  issue: 1–2
  year: 2009
  ident: ref46
  article-title: Mapping continuous depth functions of soil carbon storage and available water capacity
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.10.007
– volume: 22
  start-page: 127
  year: 2013
  ident: ref51
  article-title: Mapping efficiency and information content
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2012.02.005
– volume: 33
  start-page: 1301
  issue: 10
  year: 2007
  ident: ref33
  article-title: About regression-kriging: from equations to case studies
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2007.05.001
– volume: 466
  start-page: 558
  issue: 7306
  year: 2010
  ident: ref2
  article-title: Monitoring the world’s agriculture
  publication-title: Nature
  doi: 10.1038/466558a
– volume: 15
  start-page: 1
  year: 2007
  ident: ref23
  article-title: Infrared spectroscopy—enabling an evidence based diagnostic survellance approach to agricultural and environmental management in developing countries
  publication-title: Journal of Near Infrared Spectroscopy
  doi: 10.1255/jnirs.716
– volume: 191
  start-page: 431
  issue: 3
  year: 2006
  ident: ref7
  article-title: Knowledge discovery from models of soil properties developed through data mining
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2005.05.021
– year: 2009
  ident: ref35
  article-title: Springer series in statistics
– volume: 189
  start-page: 153
  year: 2012
  ident: ref17
  article-title: Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.05.026
– volume: 56
  start-page: 147
  year: 2010
  ident: ref3
  article-title: Soil mapping in Africa at the crossroads: work to make up for lost ground
  publication-title: Bulletin des Séances d’Académie Royale des Sciences d’Outre-Mer
– volume: 75
  start-page: 1201
  year: 2011
  ident: ref16
  article-title: Digital Soil Mapping and Modeling at Continental Scales: Finding Solutions for Global Issues
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2011.0025
– volume: 342
  start-page: 850
  issue: 6160
  year: 2013
  ident: ref13
  article-title: High-resolution global maps of 21st-century forest cover change
  publication-title: Science
  doi: 10.1126/science.1244693
– ident: ref40
  doi: 10.1201/b16500-13
– year: 2006
  ident: ref42
  article-title: The Land Degradation Surveillance Framework
– volume: 211–212
  start-page: 138
  issue: 0
  year: 2013
  ident: ref6
  article-title: Harmonisation of the soil map of Africa at the continental scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.007
– ident: ref29
– year: 2001
  ident: ref34
  article-title: Linear Models for Multivariate, Time Series, and Spatial Data
– volume: 514
  start-page: 434
  issue: 7523
  year: 2014
  ident: ref15
  article-title: China: Open access to Earth land-cover map
  publication-title: Nature
  doi: 10.1038/514434c
– volume: 124
  start-page: 383
  issue: 3–4
  year: 2004
  ident: ref49
  article-title: Australia-wide predictions of soil properties using decision trees
  publication-title: Geoderma
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: ref45
  article-title: Classification and Regression by randomForest
  publication-title: R News
– ident: ref48
– volume: 9
  start-page: e105992
  year: 2014
  ident: ref21
  article-title: SoilGrids1km—Global Soil Information Based on Automated Mapping
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0105992
– ident: ref19
– volume: vol. 37
  start-page: 1
  year: 2011
  ident: ref8
  article-title: Handbook of Soil Science
– volume: 34
  start-page: 710
  issue: 4
  year: 2004
  ident: ref25
  article-title: Terra and Aqua MODIS products available from NASA GES DAAC
  publication-title: Advances in Space Research
  doi: 10.1016/j.asr.2004.03.012
– start-page: 315
  year: 2008
  ident: ref50
  article-title: Profiles in the History of the U.S. Soil Survey
– volume: 63
  issue: 12
  year: 2015
  ident: ref28
  article-title: Model-Based Geostatistics the Easy Way
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v063.i12
– volume: 6
  start-page: 427
  issue: 5
  year: 2013
  ident: ref14
  article-title: Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error
  publication-title: International Journal of Digital Earth
  doi: 10.1080/17538947.2013.786146
– volume: 57
  start-page: 241
  issue: 4
  year: 2003
  ident: ref26
  article-title: The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/S0924-2716(02)00124-7
– year: 2014
  ident: ref4
  article-title: Africa agriculture status reports
– volume: 21
  start-page: 10
  year: 2014
  ident: ref24
  article-title: Soil spectroscopy: an opportunity to be seized
  publication-title: Global change biology
  doi: 10.1111/gcb.12632
– volume: 235–236
  start-page: 59
  issue: 0
  year: 2014
  ident: ref18
  article-title: Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.06.032
– volume: 1
  start-page: 54
  issue: 1
  year: 2009
  ident: ref47
  article-title: Easier parallel computing in R with snowfall and sfCluster
  publication-title: The R Journal
  doi: 10.32614/RJ-2009-004
– volume: 325
  start-page: 680
  year: 2009
  ident: ref12
  article-title: Digital Soil Map of the World
  publication-title: Science
  doi: 10.1126/science.1175084
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: ref36
  article-title: Random forests
  publication-title: Machine learning
  doi: 10.1023/A:1010933404324
– volume: 67
  start-page: 215
  issue: 3–4
  year: 1995
  ident: ref32
  article-title: Geoderma
– year: 2013
  ident: ref30
  article-title: Use R Series
– ident: ref10
– reference: 19661405 - Science. 2009 Aug 7;325(5941):680-1
– reference: 25171179 - PLoS One. 2014;9(8):e105992
– reference: 25341776 - Nature. 2014 Oct 23;514(7523):434
– reference: 20671691 - Nature. 2010 Jul 29;466(7306):558-60
– reference: 19968396 - Psychol Methods. 2009 Dec;14(4):323-48
– reference: 18647401 - BMC Bioinformatics. 2008;9:319
– reference: 24832363 - Glob Chang Biol. 2015 Jan;21(1):10-1
– reference: 24233722 - Science. 2013 Nov 15;342(6160):850-3
SSID ssj0053866
Score 2.6470194
Snippet 80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year...
SourceID plos
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0125814
SubjectTerms Acidity
Africa
Agricultural land
Agricultural management
Agriculture
Agroforestry
Algorithms
Aluminum
Arable land
Artificial intelligence
Bulk density
Cation exchanging
Cation-exchange capacity
Datasets
Decision making models
Environmental Monitoring - methods
Forests
Information services
Management
Mapping
Mathematical models
Models, Theoretical
Nutrients
Nutrients in soil
Organic carbon
Organic farming
Predictions
Remote sensing
Silt
Soil - chemistry
Soil fertility
Soil improvement
Soil management
Soil mapping
Soil nutrients
Soil profiles
Soil properties
Soil sciences
Spectrum analysis
Surveillance
Taxonomy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlyqAm0JL7lSD-UQSBw7jrkBKkKVqCoeErfIjm1YaUkQyR767zsTe1e7CIlLr7ETx-PPnhmP_Q0h3z1oYSGVTgtfmZTLwqYGtEKqhOMKc0IWHu8OX_0uL-_4r3txv5TqC8-EBXrgILhjJMCz0IzNjOVcVcq4wipWudwa5t3I8wk6b-5MhTUYZnFZxotyhcyP47gcPXetO4IlWVQ5X1FEI18_8ptOu_4tW_P1kcklHXTxiXyMxiM9DT-9QT64dpNsxOnZ0x-RQ_pwi3RXGokXHuhNN5nSP7jj_oLUqbTzNKQGonqgYJjQJ4o7-AF_J_Rat7Z7opiwsx96ejN5aPEsEYh_-peGDQhHI6cTfBajPCNwP5O7i5-355dpzK2QNkKxIeVaZNpK0egKVjuptWaWu9KyTHvjhAfhGqudZFDB28w7XpaNVrmrWGFFw4svZK0FaW4TqqVBkjbBvVA883llwY3jjZVgOzSsKRNSzAVdN5F4HPNfTOsxmibBAQniq3F46jg8CUkXbz0H4o136p_hGC7qIm32-ADAVEcw1e-BKSHbiIB5A32NVEIYey5VQvbmqHi7-NuiGCYoRl1067pZqANeL5hCCfkaQLT4SXBfc7CBoV25Aq-VXqyWtJPHkQQc3Gpku9v5H93eJetgBwo8AcfEHlkbXmZuH2ytwRyM0-ofiwksNQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9UwFA9jvuiDuPmx6pQIPuhDL_1ImkYQmeIYwhVxXthbSZrk7kLXzrYD9997TpsWr1z1tUnaJjkn55yc5Pcj5JUDK8yFVGHqch0ykZpQg1UIJbdMIidk6vDu8PJLdrZiny_4xR6ZOFv9AHY7Qzvkk1q11eLnj9v3oPDvBtYGEU-NFtdNbRew4PIcma3vgG0SqKpLNucVQLuzzF-g-1vLLQM14Pgj7mnVdLt80D-PUv5mm04fkPveqaQnoxQckD1bH5J7J-vWA2vYQ3Lglbijrz3S9JuHpFkqhGdY0_NmU9GvuC_fIsAqbRwdCYSo6im4L_SK4j7_KKVv6TdVm-aKIq1n13f0fLOu8cQRTFJ1S8dtCks98hO8FnNBg3g_IqvTT98_noWegSEsuUz6kCkeKSN4qXJYE4VSKjHMZiaJlNOWO6MTbZQVCVRwJnKWZVmpZGzzJDW8ZOljsl_D2B4RqoRGKDfOHJcscnFuINhjpRHgYZRJmQUknYa9KD08ObJkVMWQcxMQpoyDWeBkFX6yAhLOra5HeI7_1P-AMzrXRXDt4UHTrguvqwViLhqQbBNpw5jMpbapkUluY-ivs2lAjlAepg90BQIOYYY6kwE5nmRkd_HLuRjUGHMzqrbNzVgHYmNwmALyZBSp-SchyI3BU4bvii1h2-rFdkm9uRygwiH4Rky8p__-rWfkLviBHE_AJfyY7PftjX0OvlavXwzq8wtp-yz9
  priority: 102
  providerName: Scholars Portal
Title Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions
URI https://www.ncbi.nlm.nih.gov/pubmed/26110833
https://www.proquest.com/docview/1691280669
https://www.proquest.com/docview/1691601242
https://pubmed.ncbi.nlm.nih.gov/PMC4482144
https://doaj.org/article/5060dccad0bd44989be3d928e1db2fe3
http://dx.doi.org/10.1371/journal.pone.0125814
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvcAB0fJooKyMxAEOafOwY5sLaqtdKqStqpZKe4uc2F5W2ibLJj1w4bczk3gDiyq4-BA7ieOZseeVbwh55-AU5kLpMHWyCJlITVjAqRAqbpnCmpCpw3-HpxfZ-Q37MuMz73BrfFrlZk_sNmpTl-gjP0ZQF4wCZurT6nuIVaMwuupLaDwkuwhdhildYjYYXCDLWeZ_l0tFfOypc7SqK3sEGzOXMds6jjrUfkQ5XdbNfRrn34mTf5xEk6fkiVch6UlP8z3ywFb75PHJfO1hNOw-2fMi29D3Hlf6wzNSTzWCMczpdb1Y0kv0wq8RTpXWjvblgqhuKSgr9JaiV7_nyY_0SlemvqVYxLNpG3q9mFeYXwQkWf6gvVPCUo_zBI_FyE_HzM_JzWT89ew89PUWwpKrpA2Z5pE2gpdawg4otNaJYTYzSaRdYbkzRVIYbUUCA5yJnGVZVmoVW5mkhpcsfUF2KljbA0K1KBC4jTPHFYtcLA2Ydqw0AvSJMimzgKSbZc9LD0aONTGWeRdhE2CU9IuZI7FyT6yAhMNdqx6M4z_jT5Giw1iE0u4u1Ot57iUzR4RFA3xsosIwpqQqbGpUIm0M3-tsGpAD5IfNC5r8NycG5HDDI_d3vx26QWgxEqMrW9_1Y8ASBvUoIC97lhomCSZtDHoxvFdsMdvWV2z3VItvHTA4mNqIgPfq39N6TR6B1scx3y3hh2SnXd_ZN6BZtcWoEx9o5VmM7eTziOyeji8ur0adrwLaKZPY_hz_ApJfLYQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHipZHUwoYCSQ4pE0cO06QECqPaku7FaKttLfgxPay0jZZNqlQ_xS_kZnEWVhUwanX2Ikdz9tjf0PIcwtWWMhU-ZFNcp_LSPs5WAU_FYanWBMysnh3eHgcD874p5EYrZCf_V0YPFbZ68RWUeuqwD3yXQR1wSxgnL6dffexahRmV_sSGh1bHJrLHxCy1W8OPgB9XzC2__H0_cB3VQX8QqSs8bkSgdJSFCoBOZdKKaa5iTULlM2NsDpnuVZGMuhgdWANj-NCpaFJWKRFwSP47g1yEwxvgBIlR4sAD3RHHLvreZEMdx037Myq0uyAIRBJyJfMX1slAFFVp1V9lYf790HNPyzf_l2y5lxWutfx2DpZMeUGubM3njvYDrNB1p2KqOlLh2P96h6phgrBH8b0pJpM6Wfc9Z8jfCutLO3KE1HVUHCO6DnFLEInA6_pF1Xq6pxi0dC6qenJZFzieSZggekl7TZBDHW4UvBZzDS1wnOfnF0LJR6Q1RLWdpNQJXMEihPcipQHNkw0hJK80BL8l4IVsUeiftmzwoGfYw2OadZm9CQEQd1iZkiszBHLI_7irVkH_vGf_u-Qoou-CN3dPqjm48xpggwRHTXIjQ5yzXmapLmJdMoSE8L_WhN5ZBP5oR-gzn5zvke2ex65uvnZohmUBGZ-VGmqi64PRN7gjnnkYcdSi0lCCB2CHw7jyiVmW_qL5ZZy8q0FIofQHhH3tv49rafk1uB0eJQdHRwfPiK3weMUeNaOiW2y2swvzGPw6pr8SStKlHy9btn9BbQDZwA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISF4QGx8rDDASCDBQ9bGseMECaHBmDbGpokxqW_Bie1SqUtK0wntX-Ov4y5xCkUTPO01dr58377z7wCeO7TCUqU6iFySB0JFJsjRKgSptCKlnpCRo7PDh0fx3qn4OJTDFfjZnYWhsspOJzaK2lQF7ZH3CdSFsoBx2ne-LOJ4Z_ft9HtAHaQo09q102hZ5MBe_MDwrX6zv4O0fsH57ocv7_cC32EgKGTK54HQcqCNkoVOUOaV1pobYWPDB9rlVjqT89xoqzhOcGbgrIjjQqehTXhkZCEifO41uK4iGZKMqeEi2EM9Esf-qF6kwr7njK1pVdotNAoyCcWSKWw6BhDC6qSqL_N2_y7a_MMK7t6B2959Zdstv63Bii3X4db2aOYhPOw6rHl1UbOXHtP61V2oDjUBQYzYSTWesGPKAMwIypVVjrWtipieM3SU2BmjjEIrD6_ZZ12a6oxRA9F6XrOT8aik2iZkh8kFazdELPMYU_hYyjo1gnQPTq-EEvdhtcS13QCmVU6gcVI4mYqBCxODYaUojEJfpuBF3IOoW_as8EDo1I9jkjXZPYUBUbuYGREr88TqQbC4a9oCgfxn_jui6GIuwXg3F6rZKPNaISN0R4MyZAa5ESJN0txGJuWJDfF_nY16sEH80L2gzn5LQQ82Ox65fPjZYhgVBmWBdGmr83YORuHomvXgQctSi4_EcDpEnxzfq5aYbekvlkfK8bcGlBzDfELfe_jvz3oKN1Bqs0_7RweP4CY6n5LK7rjchNX57Nw-Rgdvnj9pJInB16sW3V8J0Ws2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Soil+Properties+of+Africa+at+250+m+Resolution%3A+Random+Forests+Significantly+Improve+Current+Predictions&rft.jtitle=PloS+one&rft.au=Hengl%2C+Tomislav&rft.au=Heuvelink%2C+Gerard+B+M&rft.au=Kempen%2C+Bas&rft.au=Leenaars%2C+Johan+G+B&rft.date=2015-06-25&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=10&rft.issue=6&rft.spage=e0125814&rft_id=info:doi/10.1371%2Fjournal.pone.0125814&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3726800021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon