Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions
80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridg...
Saved in:
Published in | PloS one Vol. 10; no. 6; p. e0125814 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
25.06.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data. |
---|---|
AbstractList | 80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008–2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management—organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15–75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data. 80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data.80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data. 80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008–2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management—organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15–75% in Root Mean Squared Error ( RMSE ) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data. |
Author | Mendes de Jesus, Jorge Walsh, Markus G. Hengl, Tomislav Leenaars, Johan G. B. Tondoh, Jérôme E. Shepherd, Keith D. Heuvelink, Gerard B. M. Kempen, Bas MacMillan, Robert A. Tamene, Lulseged Sila, Andrew |
AuthorAffiliation | 2 The Earth Institute, Columbia University, USA / Selian Agricultural Research Inst., Arusha, Tanzania 3 World Agroforestry Centre, Nairobi, Kenya 4 LandMapper Environmental Solutions Inc., Edmonton, Canada 5 International Center for Tropical Agriculture, Lilongwe, Malawi 1 ISRIC—World Soil Information, Wageningen, the Netherlands |
AuthorAffiliation_xml | – name: 3 World Agroforestry Centre, Nairobi, Kenya – name: 5 International Center for Tropical Agriculture, Lilongwe, Malawi – name: 2 The Earth Institute, Columbia University, USA / Selian Agricultural Research Inst., Arusha, Tanzania – name: 1 ISRIC—World Soil Information, Wageningen, the Netherlands – name: 4 LandMapper Environmental Solutions Inc., Edmonton, Canada |
Author_xml | – sequence: 1 givenname: Tomislav surname: Hengl fullname: Hengl, Tomislav – sequence: 2 givenname: Gerard B. M. surname: Heuvelink fullname: Heuvelink, Gerard B. M. – sequence: 3 givenname: Bas surname: Kempen fullname: Kempen, Bas – sequence: 4 givenname: Johan G. B. surname: Leenaars fullname: Leenaars, Johan G. B. – sequence: 5 givenname: Markus G. surname: Walsh fullname: Walsh, Markus G. – sequence: 6 givenname: Keith D. surname: Shepherd fullname: Shepherd, Keith D. – sequence: 7 givenname: Andrew surname: Sila fullname: Sila, Andrew – sequence: 8 givenname: Robert A. surname: MacMillan fullname: MacMillan, Robert A. – sequence: 9 givenname: Jorge surname: Mendes de Jesus fullname: Mendes de Jesus, Jorge – sequence: 10 givenname: Lulseged surname: Tamene fullname: Tamene, Lulseged – sequence: 11 givenname: Jérôme E. surname: Tondoh fullname: Tondoh, Jérôme E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26110833$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1v0zAUhiM0xD7gHyCwxA03LbbjuMkukKaKQaUh0AbX1ol9Ulw5dmYnk_bvcWmLtglxZev4Oa_f83FaHPngsSheMzpn5YJ92IQpenDzIYfnlPGqZuJZccKaks8kp-XRg_txcZrShtKqrKV8URxzyRity_KkCF9hGKxfk5tgHfkew4BxtJhI6MhFF60GAiPhFSU9ucYU3DTa4M_JNXgTenIZIqYxkRu79rbLtB_dPVn1Qwx3SJZTjOjHLIvG6m1ielk878AlfLU_z4qfl59-LL_Mrr59Xi0vrma6avg4E1BRMItKQ80YWwAANwKl4RS6FqvOtLw1gAuegc7QDoWUGhqGNS9NpUV5Vrzd6Q4uJLXvVVJMNozXVMomE6sdYQJs1BBtD_FeBbDqTyDEtYLcCu1QVVRSozUY2hohmrppsTQNr5FlHx2WWevj_rep7dHoXHQE90j08Yu3v9Q63Ckhas7E1u77vUAMt1Nuqept0ugceAzTzrfMQxY8o--eoP-u7s1DR3-tHCafgfMdoGNIKWKntB1hO6Ns0DrFqNqu2UFcbddM7dcsJ4snyQf9_6b9BmuK3E0 |
CitedBy_id | crossref_primary_10_1007_s00267_023_01837_6 crossref_primary_10_1162_rest_a_01238 crossref_primary_10_1007_s40808_018_0499_9 crossref_primary_10_1002_ldr_4027 crossref_primary_10_1111_jbi_13221 crossref_primary_10_1007_s13593_020_00628_1 crossref_primary_10_1016_j_catena_2020_104940 crossref_primary_10_5194_hess_28_117_2024 crossref_primary_10_1016_j_ecolind_2024_112544 crossref_primary_10_3390_ijgi9100587 crossref_primary_10_1016_j_apgeog_2019_102129 crossref_primary_10_1016_j_geodrs_2020_e00334 crossref_primary_10_1016_j_ejrh_2022_101062 crossref_primary_10_5194_essd_13_1089_2021 crossref_primary_10_3390_rs15123203 crossref_primary_10_3390_land11081285 crossref_primary_10_1016_j_atech_2024_100591 crossref_primary_10_1016_j_geoderma_2021_115659 crossref_primary_10_1016_j_geomorph_2024_109485 crossref_primary_10_1038_s41467_021_26907_3 crossref_primary_10_1111_agec_12532 crossref_primary_10_3390_su16041468 crossref_primary_10_1016_j_atmosenv_2021_118620 crossref_primary_10_1016_j_foreco_2018_03_019 crossref_primary_10_3390_land12101841 crossref_primary_10_1016_j_geoderma_2016_01_034 crossref_primary_10_1016_j_rse_2019_04_016 crossref_primary_10_1016_j_jenvman_2023_119598 crossref_primary_10_1007_s10346_020_01392_9 crossref_primary_10_1016_j_geodrs_2017_06_002 crossref_primary_10_1016_j_catena_2020_104715 crossref_primary_10_1016_j_jhydrol_2020_125231 crossref_primary_10_1007_s00500_019_04648_2 crossref_primary_10_1080_00103624_2018_1432637 crossref_primary_10_5194_acp_21_4575_2021 crossref_primary_10_1016_j_ejrh_2024_101756 crossref_primary_10_3390_f13071055 crossref_primary_10_1007_s12145_025_01748_6 crossref_primary_10_1016_j_ejrh_2022_101152 crossref_primary_10_1016_j_geoderma_2017_02_022 crossref_primary_10_1016_j_geoderma_2022_115840 crossref_primary_10_1007_s10661_024_13173_1 crossref_primary_10_1016_j_envc_2024_100937 crossref_primary_10_1016_j_eja_2025_127524 crossref_primary_10_3390_app11219903 crossref_primary_10_3390_geosciences9040180 crossref_primary_10_3390_ijgi10080553 crossref_primary_10_3390_urbansci9030084 crossref_primary_10_1016_j_eja_2024_127374 crossref_primary_10_1088_2976_601X_ad7d13 crossref_primary_10_1007_s11119_023_10041_9 crossref_primary_10_1016_j_compag_2019_03_015 crossref_primary_10_1016_j_envpol_2019_113367 crossref_primary_10_1029_2023GB008086 crossref_primary_10_5194_acp_23_6487_2023 crossref_primary_10_1111_aje_12907 crossref_primary_10_3389_fgene_2021_723360 crossref_primary_10_1016_j_envc_2024_100922 crossref_primary_10_1111_nph_15254 crossref_primary_10_1016_j_scitotenv_2024_175476 crossref_primary_10_1080_00103624_2024_2419994 crossref_primary_10_1016_j_geodrs_2020_e00316 crossref_primary_10_1016_j_ejrh_2023_101341 crossref_primary_10_3390_ijerph15020243 crossref_primary_10_1007_s10113_017_1186_5 crossref_primary_10_1007_s10661_021_09543_8 crossref_primary_10_3390_rs16050785 crossref_primary_10_1016_j_jenvman_2021_113556 crossref_primary_10_1016_j_indic_2024_100498 crossref_primary_10_1002_agg2_20207 crossref_primary_10_1007_s11119_023_10099_5 crossref_primary_10_3389_fvets_2019_00327 crossref_primary_10_1016_j_catena_2022_106899 crossref_primary_10_1007_s11273_017_9558_7 crossref_primary_10_3390_ijgi9020102 crossref_primary_10_3390_su13020844 crossref_primary_10_3390_ijgi9040268 crossref_primary_10_1016_j_geoderma_2024_117007 crossref_primary_10_1007_s40808_024_02055_7 crossref_primary_10_1007_s11004_021_09946_w crossref_primary_10_3390_rs12142332 crossref_primary_10_1038_s41598_018_21530_7 crossref_primary_10_1080_1343943X_2023_2241712 crossref_primary_10_1016_j_scitotenv_2018_03_324 crossref_primary_10_1016_j_geoderma_2020_114253 crossref_primary_10_1080_10106049_2019_1594394 crossref_primary_10_1145_2874309 crossref_primary_10_1016_j_geoderma_2016_07_012 crossref_primary_10_1016_j_geodrs_2021_e00411 crossref_primary_10_1016_j_geodrs_2020_e00256 crossref_primary_10_1017_S0014479721000302 crossref_primary_10_1016_j_rse_2018_04_047 crossref_primary_10_1016_j_geodrs_2016_04_002 crossref_primary_10_1016_j_geoderma_2020_114260 crossref_primary_10_1007_s10666_024_09972_y crossref_primary_10_5194_essd_15_395_2023 crossref_primary_10_5194_essd_9_1_2017 crossref_primary_10_1002_ece3_7717 crossref_primary_10_1016_j_foreco_2021_119645 crossref_primary_10_1029_2023GB008016 crossref_primary_10_1016_j_geoderma_2019_05_031 crossref_primary_10_1016_j_geodrs_2020_e00260 crossref_primary_10_1080_14735903_2020_1824419 crossref_primary_10_3390_plants12071464 crossref_primary_10_1016_j_geoderma_2018_03_029 crossref_primary_10_1016_j_compag_2019_01_011 crossref_primary_10_3390_su11133569 crossref_primary_10_3389_fsufs_2023_1305799 crossref_primary_10_3389_fsufs_2019_00071 crossref_primary_10_1002_saj2_20525 crossref_primary_10_1016_j_geoderma_2020_114233 crossref_primary_10_3390_rs15123158 crossref_primary_10_1016_j_geoderma_2020_114237 crossref_primary_10_1016_j_catena_2019_104149 crossref_primary_10_3389_fsoil_2022_927452 crossref_primary_10_1007_s10653_024_02259_x crossref_primary_10_1007_s11258_018_0795_5 crossref_primary_10_1007_s12145_022_00784_w crossref_primary_10_3390_agriculture13010109 crossref_primary_10_1016_j_geoderma_2021_115402 crossref_primary_10_1016_j_scitotenv_2020_137078 crossref_primary_10_1016_j_scitotenv_2020_142661 crossref_primary_10_1111_ejss_13226 crossref_primary_10_1080_15481603_2025_2460513 crossref_primary_10_1371_journal_pone_0289286 crossref_primary_10_1111_ejss_13461 crossref_primary_10_1016_j_geodrs_2015_12_002 crossref_primary_10_3390_land12071295 crossref_primary_10_3390_rs16010091 crossref_primary_10_5194_hess_23_1113_2019 crossref_primary_10_1111_ecog_05703 crossref_primary_10_1016_j_aiig_2022_12_002 crossref_primary_10_1002_ldr_3582 crossref_primary_10_3390_rs13234825 crossref_primary_10_1016_j_scitotenv_2016_07_066 crossref_primary_10_1016_j_geodrs_2024_e00763 crossref_primary_10_1016_j_geodrs_2024_e00766 crossref_primary_10_1017_S0029665120006904 crossref_primary_10_1007_s10661_024_12393_9 crossref_primary_10_1007_s12145_025_01833_w crossref_primary_10_1111_sum_12753 crossref_primary_10_1111_sum_12874 crossref_primary_10_2139_ssrn_4045839 crossref_primary_10_3390_rs12244073 crossref_primary_10_1080_17445647_2019_1690595 crossref_primary_10_2139_ssrn_4128965 crossref_primary_10_1016_j_ecolind_2021_108274 crossref_primary_10_3390_ijgi11040242 crossref_primary_10_1007_s12517_023_11670_0 crossref_primary_10_1016_j_geoderma_2022_116192 crossref_primary_10_1080_17445647_2020_1761061 crossref_primary_10_1016_j_geoderma_2020_114452 crossref_primary_10_1111_mec_15754 crossref_primary_10_1016_j_ecolind_2020_106801 crossref_primary_10_1016_j_scitotenv_2023_167989 crossref_primary_10_1016_j_geoderma_2020_114575 crossref_primary_10_1016_j_fcr_2021_108393 crossref_primary_10_3390_agronomy12071653 crossref_primary_10_1175_JHM_D_19_0214_1 crossref_primary_10_1002_ece3_4919 crossref_primary_10_1016_j_geodrs_2020_e00299 crossref_primary_10_1016_j_agwat_2022_108124 crossref_primary_10_1111_gcb_16418 crossref_primary_10_1016_j_geodrs_2021_e00439 crossref_primary_10_2139_ssrn_4093525 crossref_primary_10_1038_s41586_020_2824_5 crossref_primary_10_1016_j_agsy_2020_102819 crossref_primary_10_1016_j_geoderma_2018_07_052 crossref_primary_10_1016_j_pce_2023_103387 crossref_primary_10_1016_j_apgeog_2017_05_010 crossref_primary_10_1080_10106049_2021_1959656 crossref_primary_10_1016_j_agee_2020_107165 crossref_primary_10_1073_pnas_2011515117 crossref_primary_10_1016_j_aiig_2022_02_001 crossref_primary_10_1016_j_scitotenv_2023_167855 crossref_primary_10_3897_oneeco_7_e76410 crossref_primary_10_1007_s10311_018_0753_4 crossref_primary_10_1016_j_worlddev_2022_106042 crossref_primary_10_1016_j_agsy_2022_103588 crossref_primary_10_1016_j_geodrs_2021_e00444 crossref_primary_10_1080_00103624_2023_2253840 crossref_primary_10_3390_agronomy8120291 crossref_primary_10_3390_hydrology7010008 crossref_primary_10_3390_su132111739 crossref_primary_10_1016_j_geodrs_2021_e00440 crossref_primary_10_1016_j_uclim_2017_09_001 crossref_primary_10_3389_fsufs_2021_675382 crossref_primary_10_1016_j_jag_2019_101905 crossref_primary_10_3390_s24196287 crossref_primary_10_1016_j_acags_2019_100001 crossref_primary_10_1002_agj2_21223 crossref_primary_10_1016_j_geoderma_2021_114998 crossref_primary_10_1371_journal_pone_0210766 crossref_primary_10_30516_bilgesci_1532645 crossref_primary_10_1590_0001_3765202220200411 crossref_primary_10_1016_j_catena_2021_105376 crossref_primary_10_1007_s10705_021_10174_1 crossref_primary_10_1016_j_heliyon_2023_e13965 crossref_primary_10_1186_s13021_021_00195_2 crossref_primary_10_1016_j_geodrs_2020_e00275 crossref_primary_10_1016_j_geoderma_2015_08_035 crossref_primary_10_1016_j_geoderma_2023_116683 crossref_primary_10_1016_j_agsy_2020_102918 crossref_primary_10_1080_19475705_2020_1785555 crossref_primary_10_3390_rs14020315 crossref_primary_10_1016_j_grj_2017_06_001 crossref_primary_10_3390_w9020147 crossref_primary_10_1016_j_envsoft_2022_105447 crossref_primary_10_3390_s16111950 crossref_primary_10_1016_j_jafrearsci_2018_06_028 crossref_primary_10_1016_j_envsoft_2023_105633 crossref_primary_10_1016_j_foreco_2021_119226 crossref_primary_10_1016_j_foreco_2024_121927 crossref_primary_10_1590_1413_7054202448013824 crossref_primary_10_1016_j_jaridenv_2016_12_006 crossref_primary_10_3390_rs16111871 crossref_primary_10_1016_j_geoderma_2017_04_018 crossref_primary_10_1016_j_fcr_2022_108548 crossref_primary_10_1016_j_jenvman_2021_112509 crossref_primary_10_1016_j_geoderma_2019_07_005 crossref_primary_10_1111_sum_12833 crossref_primary_10_1016_j_scib_2021_10_013 crossref_primary_10_1039_D0AY01389G crossref_primary_10_3390_w10111549 crossref_primary_10_1111_gcb_16551 crossref_primary_10_3390_rs8080614 crossref_primary_10_1016_j_aiig_2021_01_001 crossref_primary_10_1016_j_jafrearsci_2020_103871 crossref_primary_10_1016_j_envdev_2016_06_001 crossref_primary_10_1016_j_scitotenv_2022_158707 crossref_primary_10_1016_j_geoderma_2024_116798 crossref_primary_10_1111_mec_13891 crossref_primary_10_1093_erae_jbab030 crossref_primary_10_1016_j_ecolind_2024_112294 crossref_primary_10_1134_S1064229323601762 crossref_primary_10_1016_j_chemosphere_2021_129611 crossref_primary_10_1016_j_scitotenv_2021_149959 crossref_primary_10_5194_hess_23_4603_2019 crossref_primary_10_1016_j_still_2021_105114 crossref_primary_10_1016_j_geoderma_2017_10_048 crossref_primary_10_1007_s12665_022_10444_3 crossref_primary_10_5194_soil_10_189_2024 crossref_primary_10_1088_1748_9326_ac0567 crossref_primary_10_1007_s10705_020_10079_5 crossref_primary_10_3390_ijerph182111691 crossref_primary_10_3390_su141811710 crossref_primary_10_1111_csp2_479 crossref_primary_10_1016_j_catena_2022_106404 crossref_primary_10_1111_sum_12900 crossref_primary_10_1590_1413_7054201943015619 crossref_primary_10_1016_j_geodrs_2016_12_002 crossref_primary_10_3390_rs14236017 crossref_primary_10_3390_rs13051025 crossref_primary_10_1016_j_gfs_2017_03_003 crossref_primary_10_1590_2179_8087_061617 crossref_primary_10_1016_j_geomorph_2017_04_038 crossref_primary_10_3390_rs16071128 crossref_primary_10_1016_j_measurement_2022_111706 crossref_primary_10_7717_peerj_cs_1109 crossref_primary_10_1016_j_heliyon_2024_e33448 crossref_primary_10_1007_s11600_022_00956_8 crossref_primary_10_3390_app13095249 crossref_primary_10_1016_j_ecoser_2021_101249 crossref_primary_10_1016_j_geodrs_2021_e00366 crossref_primary_10_3390_land9040125 crossref_primary_10_1016_j_catena_2023_106932 crossref_primary_10_1088_1748_9326_aaac84 crossref_primary_10_1007_s40808_023_01788_1 crossref_primary_10_1016_j_agsy_2022_103429 crossref_primary_10_1016_j_jhydrol_2022_127805 crossref_primary_10_1016_j_ecoinf_2023_102290 crossref_primary_10_1016_j_compag_2022_107533 crossref_primary_10_1016_j_geoderma_2018_11_028 crossref_primary_10_1016_j_geodrs_2023_e00745 crossref_primary_10_5194_hess_26_4447_2022 crossref_primary_10_1016_j_geoderma_2018_11_024 crossref_primary_10_1016_j_geodrs_2017_07_005 crossref_primary_10_3390_rs12071197 crossref_primary_10_3390_rs15051338 crossref_primary_10_1016_j_scitotenv_2019_136165 crossref_primary_10_1080_02571862_2019_1570566 crossref_primary_10_1016_j_eja_2017_02_002 crossref_primary_10_1186_s40663_016_0077_4 crossref_primary_10_1590_1678_992x_2017_0300 crossref_primary_10_1111_sum_12925 crossref_primary_10_1002_2015GB005239 crossref_primary_10_1007_s10705_018_9958_y crossref_primary_10_1007_s12517_022_10799_8 crossref_primary_10_3390_rs15215228 crossref_primary_10_1093_g3journal_jkad128 crossref_primary_10_3390_app9102048 crossref_primary_10_1016_j_envpol_2017_12_070 crossref_primary_10_1016_j_scitotenv_2021_149505 crossref_primary_10_36783_18069657rbcs20210084 crossref_primary_10_1007_s10533_021_00755_1 crossref_primary_10_1111_agec_12796 crossref_primary_10_5194_soil_4_173_2018 crossref_primary_10_3390_rs12101687 crossref_primary_10_1016_j_agee_2017_11_022 crossref_primary_10_1007_s11053_021_09860_2 crossref_primary_10_1007_s11119_016_9439_8 crossref_primary_10_1016_j_catena_2021_105343 crossref_primary_10_1111_2041_210X_13423 crossref_primary_10_1016_j_geodrs_2022_e00563 crossref_primary_10_1007_s13157_023_01705_3 crossref_primary_10_1016_j_geodrs_2022_e00561 crossref_primary_10_1186_s13717_022_00411_y crossref_primary_10_3390_s22093119 crossref_primary_10_1007_s10661_021_08947_w crossref_primary_10_3389_ffgc_2023_1209232 crossref_primary_10_3390_land12050983 crossref_primary_10_3390_rs16203781 crossref_primary_10_1016_j_rsma_2024_103655 crossref_primary_10_1111_risa_13359 crossref_primary_10_1080_13658816_2022_2131789 crossref_primary_10_3390_land12040819 crossref_primary_10_1016_j_geoderma_2017_06_016 crossref_primary_10_7831_ras_11_0_93 crossref_primary_10_1016_j_rse_2016_03_028 crossref_primary_10_1371_journal_pntd_0010227 crossref_primary_10_5194_essd_17_517_2025 crossref_primary_10_1109_JSTARS_2020_2974896 crossref_primary_10_1016_j_catena_2018_04_013 crossref_primary_10_1016_j_apgeog_2018_05_003 crossref_primary_10_1016_j_catena_2017_10_002 crossref_primary_10_1002_ajb2_16461 crossref_primary_10_1126_science_aav0564 crossref_primary_10_1016_j_geoderma_2024_116912 crossref_primary_10_1016_j_geodrs_2023_e00731 crossref_primary_10_3390_w12102763 crossref_primary_10_1002_saj2_20263 crossref_primary_10_1007_s10584_021_03191_0 crossref_primary_10_1007_s12145_024_01298_3 crossref_primary_10_1007_s10668_019_00557_4 crossref_primary_10_4018_IJAGR_2019070104 crossref_primary_10_1016_j_compag_2020_105217 crossref_primary_10_1038_s41558_024_02201_0 crossref_primary_10_1016_j_geoderma_2023_116740 crossref_primary_10_1016_j_geodrs_2023_e00713 crossref_primary_10_1016_j_landusepol_2017_06_025 crossref_primary_10_1016_j_agsy_2019_02_013 crossref_primary_10_1016_j_agwat_2021_106758 crossref_primary_10_1016_j_fcr_2020_107987 crossref_primary_10_1016_j_geodrs_2022_e00578 crossref_primary_10_1038_s41561_018_0092_x crossref_primary_10_1016_j_geoderma_2016_04_019 crossref_primary_10_1016_j_geodrs_2017_03_002 crossref_primary_10_3390_ijgi6090283 crossref_primary_10_3390_su122410274 crossref_primary_10_1080_27658511_2024_2333631 crossref_primary_10_1016_j_apm_2019_12_016 crossref_primary_10_2139_ssrn_4863781 crossref_primary_10_5194_hess_23_2615_2019 crossref_primary_10_1021_acs_est_9b00504 crossref_primary_10_1016_j_compag_2024_108831 crossref_primary_10_1016_j_geoderma_2016_12_001 crossref_primary_10_1007_s40808_025_02331_0 crossref_primary_10_1590_18069657rbcs20170183 crossref_primary_10_1016_j_gfs_2018_12_006 crossref_primary_10_3390_agronomy15030533 crossref_primary_10_1038_s41893_022_00861_4 crossref_primary_10_5194_bg_18_4445_2021 crossref_primary_10_1016_j_geoderma_2019_114139 crossref_primary_10_3390_rs70809563 crossref_primary_10_1016_j_geoderma_2019_114132 crossref_primary_10_1038_s41598_018_28244_w crossref_primary_10_3390_w15193396 crossref_primary_10_1016_j_ecoinf_2024_102875 crossref_primary_10_3390_su11010048 crossref_primary_10_5194_soil_9_351_2023 crossref_primary_10_1111_ddi_13152 crossref_primary_10_1029_2023EF004096 crossref_primary_10_3390_app11125376 crossref_primary_10_1016_j_jhydrol_2018_03_042 crossref_primary_10_3233_JIFS_240493 crossref_primary_10_1016_j_scitotenv_2020_140702 crossref_primary_10_1016_j_geoderma_2022_116265 crossref_primary_10_1109_JSTARS_2019_2902375 crossref_primary_10_3390_rs13245115 crossref_primary_10_1002_ldr_3826 crossref_primary_10_3390_land12050976 crossref_primary_10_1142_S0116110524500021 crossref_primary_10_5194_hess_26_71_2022 crossref_primary_10_1016_j_catena_2023_107364 crossref_primary_10_2136_sssaj2016_12_0421 crossref_primary_10_1016_j_agsy_2023_103667 crossref_primary_10_1002_met_1959 crossref_primary_10_1002_esp_4301 crossref_primary_10_1007_s10705_017_9887_1 crossref_primary_10_1016_j_ecolind_2022_109443 crossref_primary_10_1134_S1064229322602645 crossref_primary_10_1016_j_geoderma_2024_116953 crossref_primary_10_1002_eap_1505 crossref_primary_10_1016_j_geoderma_2018_02_046 crossref_primary_10_1007_s10113_022_02008_9 crossref_primary_10_1016_j_agsy_2021_103095 crossref_primary_10_31545_intagr_188506 crossref_primary_10_17491_jgsi_2024_173873 crossref_primary_10_1016_j_geodrs_2018_e00195 crossref_primary_10_1007_s13593_023_00872_1 crossref_primary_10_1016_j_jag_2019_02_004 crossref_primary_10_1016_j_earscirev_2019_103028 crossref_primary_10_1016_j_jia_2022_08_054 crossref_primary_10_1080_02571862_2016_1166400 crossref_primary_10_1016_j_foreco_2019_117575 crossref_primary_10_1080_17538947_2016_1265017 crossref_primary_10_1002_ehs2_1209 crossref_primary_10_1080_10106049_2021_1996639 crossref_primary_10_1080_15481603_2020_1744250 crossref_primary_10_1016_j_geoderma_2019_114067 crossref_primary_10_1007_s10661_021_09502_3 crossref_primary_10_1007_s12517_017_3345_x crossref_primary_10_3390_agronomy14071417 crossref_primary_10_1371_journal_pone_0170478 crossref_primary_10_1016_j_ocecoaman_2020_105145 crossref_primary_10_1016_j_scitotenv_2020_136511 crossref_primary_10_1016_j_soisec_2021_100018 crossref_primary_10_1007_s12524_017_0738_y crossref_primary_10_1007_s10661_023_12189_3 crossref_primary_10_1080_10618600_2020_1844215 crossref_primary_10_1080_10106049_2018_1464601 crossref_primary_10_1007_s12665_024_12050_x crossref_primary_10_1038_s41598_018_36587_7 crossref_primary_10_1080_10106049_2021_2002426 crossref_primary_10_1038_s41598_022_09153_5 crossref_primary_10_3390_rs15174264 crossref_primary_10_1016_j_agsy_2020_102828 crossref_primary_10_3389_fsoil_2022_890437 crossref_primary_10_1016_j_heliyon_2023_e22639 crossref_primary_10_5194_bg_14_3239_2017 crossref_primary_10_1016_j_eja_2016_03_007 crossref_primary_10_3390_rs16224304 crossref_primary_10_1016_j_ecss_2023_108512 crossref_primary_10_1016_j_geoderma_2016_04_027 crossref_primary_10_1016_j_ecolmodel_2021_109501 crossref_primary_10_1080_19475705_2021_1906759 crossref_primary_10_3390_rs11242905 crossref_primary_10_1016_j_atmosenv_2016_12_057 crossref_primary_10_1016_j_gecco_2022_e02274 crossref_primary_10_3390_agronomy13041031 crossref_primary_10_1016_j_catena_2025_108843 crossref_primary_10_3390_su15043337 crossref_primary_10_1073_pnas_2013771117 crossref_primary_10_3390_land12010032 crossref_primary_10_1590_0001_3765201820180423 crossref_primary_10_3390_ijerph15122680 crossref_primary_10_1080_19475705_2024_2426682 crossref_primary_10_3390_s22186890 crossref_primary_10_1016_j_geoderma_2019_114061 crossref_primary_10_1007_s10457_024_01025_3 crossref_primary_10_1017_S1742170519000504 crossref_primary_10_1080_19475683_2024_2324398 crossref_primary_10_1080_24749508_2023_2167632 crossref_primary_10_7717_peerj_11685 crossref_primary_10_1007_s12665_024_11834_5 crossref_primary_10_1016_j_jhydrol_2022_128753 crossref_primary_10_1016_j_geoderma_2021_115079 crossref_primary_10_1007_s10661_023_11126_8 crossref_primary_10_1016_j_still_2020_104589 crossref_primary_10_1371_journal_pone_0239149 crossref_primary_10_1016_j_still_2025_106530 crossref_primary_10_1016_S2095_3119_19_62857_1 crossref_primary_10_3390_ijgi10040243 crossref_primary_10_3390_su15086495 crossref_primary_10_1016_j_aiig_2024_100093 crossref_primary_10_1088_1748_9326_ab3186 crossref_primary_10_3390_f8020052 crossref_primary_10_1007_s11600_021_00691_6 crossref_primary_10_1016_j_envres_2021_110905 crossref_primary_10_1016_j_geoderma_2023_116405 crossref_primary_10_1016_j_geoderma_2024_116944 crossref_primary_10_1111_nph_16702 crossref_primary_10_3389_fagro_2024_1376110 crossref_primary_10_1016_j_rsase_2021_100498 crossref_primary_10_5194_piahs_374_123_2016 crossref_primary_10_1016_j_worlddev_2017_12_009 crossref_primary_10_3390_rs14215503 crossref_primary_10_7717_peerj_5518 crossref_primary_10_1007_s12145_023_01160_y crossref_primary_10_1016_j_geoderma_2015_12_003 crossref_primary_10_1371_journal_pone_0270176 crossref_primary_10_1080_02723646_2018_1541706 crossref_primary_10_1016_j_envc_2023_100714 crossref_primary_10_1016_j_landusepol_2017_04_028 crossref_primary_10_1016_j_jag_2023_103364 crossref_primary_10_11646_zootaxa_5512_1_1 crossref_primary_10_5194_soil_5_137_2019 crossref_primary_10_1111_ecog_05730 crossref_primary_10_1016_j_catena_2018_10_005 crossref_primary_10_1029_2021GB007213 crossref_primary_10_3390_ijerph18052775 crossref_primary_10_2139_ssrn_3928321 crossref_primary_10_3390_f10111023 crossref_primary_10_1016_j_geoderma_2019_01_049 crossref_primary_10_1016_j_scitotenv_2016_11_078 crossref_primary_10_1002_ldr_5194 crossref_primary_10_1016_j_scitotenv_2020_137814 crossref_primary_10_1016_j_gecco_2021_e01527 crossref_primary_10_1038_s41598_024_83551_9 crossref_primary_10_3389_fmars_2016_00213 crossref_primary_10_1007_s40808_023_01890_4 crossref_primary_10_1002_saj2_20559 crossref_primary_10_1016_j_apgeog_2019_102086 crossref_primary_10_3390_agronomy13030632 crossref_primary_10_1007_s11368_024_03836_4 crossref_primary_10_5897_AJAR2023_16385 crossref_primary_10_1080_27669645_2024_2400432 crossref_primary_10_1016_j_ejrs_2022_01_014 crossref_primary_10_1016_j_rsase_2023_100990 crossref_primary_10_1016_j_agsy_2017_03_004 crossref_primary_10_5194_hess_24_2505_2020 crossref_primary_10_1016_j_geoderma_2015_12_025 crossref_primary_10_1016_j_geoderma_2019_01_018 crossref_primary_10_5194_bg_15_1663_2018 crossref_primary_10_3390_f7110281 crossref_primary_10_1016_j_geoderma_2021_115042 crossref_primary_10_1038_s43247_024_01731_x crossref_primary_10_1016_j_catena_2022_106381 crossref_primary_10_1134_S1064229320090136 crossref_primary_10_1007_s10705_017_9827_0 crossref_primary_10_1007_s12517_022_09629_8 crossref_primary_10_1016_j_catena_2022_106024 crossref_primary_10_1371_journal_pone_0186025 crossref_primary_10_1590_1413_70542017416010317 crossref_primary_10_1016_j_eja_2024_127092 crossref_primary_10_1007_s10705_017_9870_x crossref_primary_10_1016_j_envc_2021_100260 crossref_primary_10_1016_j_catena_2018_03_023 crossref_primary_10_1007_s10584_020_02924_x crossref_primary_10_1016_j_geodrs_2017_04_003 crossref_primary_10_1080_19475683_2020_1788639 crossref_primary_10_1016_j_scitotenv_2019_06_320 crossref_primary_10_3390_f12111575 crossref_primary_10_1016_j_ejrh_2019_01_003 crossref_primary_10_1016_S2095_3119_18_62071_4 crossref_primary_10_1080_07038992_2022_2056435 crossref_primary_10_3390_soilsystems4020032 crossref_primary_10_1016_j_geoderma_2017_12_002 crossref_primary_10_1016_j_geoderma_2019_114094 crossref_primary_10_1016_j_apgeog_2020_102299 crossref_primary_10_1111_gcb_17089 crossref_primary_10_1029_2018WR023939 crossref_primary_10_1016_j_catena_2022_106499 crossref_primary_10_1016_j_catena_2023_107643 crossref_primary_10_1080_17538947_2023_2210314 crossref_primary_10_2134_age2018_04_0008 crossref_primary_10_1002_2016JG003488 crossref_primary_10_3390_cli8090096 crossref_primary_10_1016_j_scitotenv_2018_12_248 crossref_primary_10_3390_soilsystems3020033 crossref_primary_10_1016_j_catena_2018_11_010 crossref_primary_10_1016_j_geoderma_2021_115108 crossref_primary_10_36783_18069657rbcs20230121 crossref_primary_10_3390_agronomy14040693 crossref_primary_10_1016_j_geoderma_2019_01_004 crossref_primary_10_3390_rs13234772 crossref_primary_10_1016_j_envsoft_2019_05_012 crossref_primary_10_3390_cli8090097 crossref_primary_10_3897_VCS_99050 crossref_primary_10_1007_s10584_025_03878_8 crossref_primary_10_1002_jpln_202400148 crossref_primary_10_1016_j_catena_2017_03_020 crossref_primary_10_1016_j_geoderma_2019_01_007 crossref_primary_10_3390_rs13091682 crossref_primary_10_1007_s10584_024_03702_9 crossref_primary_10_1017_S1742170520000034 crossref_primary_10_1007_s11442_023_2142_6 crossref_primary_10_1016_j_spasta_2022_100639 crossref_primary_10_1007_s12665_025_12129_z crossref_primary_10_1371_journal_pone_0230990 crossref_primary_10_3390_jmse11040785 crossref_primary_10_36783_18069657rbcs20230130 crossref_primary_10_3390_land9010015 crossref_primary_10_1016_j_ecolind_2019_106033 crossref_primary_10_1371_journal_pone_0241637 crossref_primary_10_1016_j_geodrs_2020_e00300 crossref_primary_10_1016_j_jclepro_2023_138544 crossref_primary_10_1080_20964471_2018_1472392 crossref_primary_10_3390_agronomy13030781 crossref_primary_10_3390_su12010050 crossref_primary_10_1007_s10661_021_08946_x crossref_primary_10_1080_00103624_2018_1448862 crossref_primary_10_1371_journal_pone_0229509 crossref_primary_10_1002_saj2_20487 crossref_primary_10_3390_su10051610 crossref_primary_10_1016_j_spasta_2018_10_001 crossref_primary_10_1016_j_apgeog_2018_02_008 crossref_primary_10_1016_j_geoderma_2024_117067 crossref_primary_10_1016_j_geoderma_2018_09_006 crossref_primary_10_1016_j_ecolind_2018_01_049 crossref_primary_10_1016_j_geoderma_2018_09_008 crossref_primary_10_3390_ijerph16193523 crossref_primary_10_1016_j_fcr_2020_107963 crossref_primary_10_3390_atmos11101124 crossref_primary_10_1016_j_catena_2023_107677 crossref_primary_10_1002_ldr_3075 crossref_primary_10_19047_0136_1694_2018_95_3_23 crossref_primary_10_3390_geosciences10080287 crossref_primary_10_3390_rs16213939 crossref_primary_10_1080_00103624_2025_2449946 crossref_primary_10_1016_j_still_2019_104410 crossref_primary_10_1016_j_geoderma_2016_12_017 crossref_primary_10_1371_journal_pone_0169748 crossref_primary_10_1016_j_jappgeo_2023_104944 crossref_primary_10_1016_j_geoderma_2022_115773 crossref_primary_10_1080_10095020_2025_2454523 crossref_primary_10_5194_essd_16_2941_2024 crossref_primary_10_1016_j_foreco_2020_118557 crossref_primary_10_1111_aje_13350 crossref_primary_10_1016_j_jclepro_2023_139739 crossref_primary_10_1080_23328940_2020_1737479 crossref_primary_10_1016_j_geoderma_2021_115117 crossref_primary_10_4000_geomorphologie_16744 crossref_primary_10_1080_15324982_2024_2317399 crossref_primary_10_1007_s11004_021_09989_z crossref_primary_10_1016_j_geoderma_2018_09_011 crossref_primary_10_1098_rstb_2016_0165 crossref_primary_10_1007_s10653_019_00499_w |
Cites_doi | 10.1016/j.cageo.2010.03.019 10.1016/j.agsy.2014.09.002 10.1186/1471-2105-9-319 10.1111/j.1365-2389.2011.01364.x 10.1016/j.geoderma.2004.11.012 10.1007/978-1-4614-6849-3 10.1037/a0016973 10.1016/j.advwatres.2009.10.008 10.1016/j.geoderma.2009.10.007 10.1016/j.jag.2012.02.005 10.1016/j.cageo.2007.05.001 10.1038/466558a 10.1255/jnirs.716 10.1016/j.ecolmodel.2005.05.021 10.1016/j.geoderma.2012.05.026 10.2136/sssaj2011.0025 10.1126/science.1244693 10.1201/b16500-13 10.1016/j.geoderma.2013.07.007 10.1038/514434c 10.1371/journal.pone.0105992 10.1016/j.asr.2004.03.012 10.18637/jss.v063.i12 10.1080/17538947.2013.786146 10.1016/S0924-2716(02)00124-7 10.1111/gcb.12632 10.1016/j.geoderma.2014.06.032 10.32614/RJ-2009-004 10.1126/science.1175084 10.1023/A:1010933404324 |
ContentType | Journal Article |
Copyright | 2015 Hengl et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2015 Hengl et al 2015 Hengl et al |
Copyright_xml | – notice: 2015 Hengl et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2015 Hengl et al 2015 Hengl et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0125814 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts ProQuest Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Proquest Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological science database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database (subscripiton) Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Agriculture |
DocumentTitleAlternate | Mapping Soil Properties of Africa at 250 m Resolution |
EISSN | 1932-6203 |
ExternalDocumentID | 1691280669 oai_doaj_org_article_5060dccad0bd44989be3d928e1db2fe3 PMC4482144 3726800021 26110833 10_1371_journal_pone_0125814 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | New York Netherlands Kenya United States--US Africa |
GeographicLocations_xml | – name: New York – name: Netherlands – name: Africa – name: United States--US – name: Kenya |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c592t-4a50ad75ca81117aaa2d4e6d20afbe5fdb2bdae72ca8fd0fe466ca91e823d5c43 |
IEDL.DBID | 7X7 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:14:00 EST 2021 Wed Aug 27 01:29:15 EDT 2025 Thu Aug 21 18:17:41 EDT 2025 Fri Jul 11 12:44:06 EDT 2025 Fri Jul 25 10:23:19 EDT 2025 Thu Apr 03 07:08:25 EDT 2025 Thu Apr 24 22:50:19 EDT 2025 Tue Jul 01 01:37:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c592t-4a50ad75ca81117aaa2d4e6d20afbe5fdb2bdae72ca8fd0fe466ca91e823d5c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: R. A. MacMillan is owner and retired principal of LandMapper Environmental Solutions Inc. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials. Conceived and designed the experiments: TH GH BK MW KS. Performed the experiments: MW KS AS LT JT. Analyzed the data: TH GH BK JJ AS RM. Contributed reagents/materials/analysis tools: JL MW KS AS LT JT. Wrote the paper: TH GH RM MW. |
OpenAccessLink | https://www.proquest.com/docview/1691280669?pq-origsite=%requestingapplication% |
PMID | 26110833 |
PQID | 1691280669 |
PQPubID | 1436336 |
ParticipantIDs | plos_journals_1691280669 doaj_primary_oai_doaj_org_article_5060dccad0bd44989be3d928e1db2fe3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4482144 proquest_miscellaneous_1691601242 proquest_journals_1691280669 pubmed_primary_26110833 crossref_citationtrail_10_1371_journal_pone_0125814 crossref_primary_10_1371_journal_pone_0125814 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-25 |
PublicationDateYYYYMMDD | 2015-06-25 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2015 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | (ref5) 2014 R Christensen (ref34) 2001 ref11 ref10 AB McBratney (ref8) 2011; vol. 37 MC Hansen (ref13) 2013; 342 JL Boettinger (ref22) 2010; vol. 2 ref19 DJ Brus (ref52) 2011; 62 T Hengl (ref51) 2013; 22 T Hengl (ref33) 2007; 33 J Böhner (ref44) 2008; vol. 19 KD Shepherd (ref53) 2015; 132 S Ahmad (ref38) 2010; 33 PJ Durana (ref50) 2008 IOA Odeh (ref32) 1995; 67 ref48 O Dewitte (ref6) 2013; 211–212 ref43 L Breiman (ref36) 2001; 45 D Wysocki (ref54) 2005; 126 A Statnikov (ref39) 2008; 9 ref9 T Hengl (ref21) 2014; 9 D de Brogniez (ref20) 2014 ref40 NP Odgers (ref17) 2012; 189 KD Shepherd (ref23) 2007; 15 R Bivand (ref30) 2013 E Van Ranst (ref3) 2010; 56 A Liaw (ref45) 2002; 2 T Vågen (ref41) 2010 J Knaus (ref47) 2009; 1 B Rabus (ref26) 2003; 57 S Grunwald (ref16) 2011; 75 J Sachs (ref2) 2010; 466 EN Bui (ref7) 2006; 191 (ref4) 2014 PE Brown (ref28) 2015; 63 MG Walsh (ref42) 2006 BP Malone (ref46) 2009; 154 A Savtchenko (ref25) 2004; 34 N Mansuy (ref18) 2014; 235–236 Sanchez (ref12) 2009; 325 M Kuhn (ref31) 2013 BL Henderson (ref49) 2004; 124 C Jun (ref15) 2014; 514 ref29 TJ Hastie (ref35) 2009 JO Sexton (ref14) 2013; 6 C Strobl (ref37) 2009; 14 (ref1) 2002 E Pebesma (ref27) 2011; 37 M Nocita (ref24) 2014; 21 24233722 - Science. 2013 Nov 15;342(6160):850-3 18647401 - BMC Bioinformatics. 2008;9:319 25341776 - Nature. 2014 Oct 23;514(7523):434 20671691 - Nature. 2010 Jul 29;466(7306):558-60 19661405 - Science. 2009 Aug 7;325(5941):680-1 19968396 - Psychol Methods. 2009 Dec;14(4):323-48 25171179 - PLoS One. 2014;9(8):e105992 24832363 - Glob Chang Biol. 2015 Jan;21(1):10-1 |
References_xml | – volume: 37 start-page: 343 issue: 3 year: 2011 ident: ref27 article-title: INTAMAP: The design and implementation of an interoperable automated interpolation web service publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2010.03.019 – volume: 132 start-page: 93 year: 2015 ident: ref53 article-title: Land health surveillance and response: A framework for evidence-informed land management publication-title: Agricultural Systems doi: 10.1016/j.agsy.2014.09.002 – volume: 9 start-page: 319 issue: 1 year: 2008 ident: ref39 article-title: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-319 – ident: ref43 – volume: vol. 2 year: 2010 ident: ref22 article-title: Digital Soil Mapping: Bridging Research, Environmental Application, and Operation. – volume: 62 start-page: 394 issue: 3 year: 2011 ident: ref52 article-title: Sampling for validation of digital soil maps publication-title: European Journal of Soil Science doi: 10.1111/j.1365-2389.2011.01364.x – volume: 126 start-page: 167 year: 2005 ident: ref54 article-title: Soil surveys: A window to the subsurface publication-title: Geoderma doi: 10.1016/j.geoderma.2004.11.012 – year: 2013 ident: ref31 article-title: Applied predictive modeling doi: 10.1007/978-1-4614-6849-3 – year: 2014 ident: ref20 article-title: A map of the topsoil organic carbon content of Europe generated by a generalized additive model publication-title: European Journal of Soil Science – year: 2010 ident: ref41 article-title: Africa Soil Information Service (AfSIS) – year: 2014 ident: ref5 article-title: No Ordinary Matter: Conserving, Restoring and Enhancing Africa’s soils – volume: 14 start-page: 323 issue: 4 year: 2009 ident: ref37 article-title: An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests publication-title: Psychological methods doi: 10.1037/a0016973 – ident: ref9 – volume: 33 start-page: 69 issue: 1 year: 2010 ident: ref38 article-title: Estimating soil moisture using remote sensing data: A machine learning approach publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2009.10.008 – year: 2002 ident: ref1 article-title: World agriculture: towards 2015/2030 – ident: ref11 – volume: vol. 19 year: 2008 ident: ref44 article-title: SAGA—Seconds Out – volume: 154 start-page: 138 issue: 1–2 year: 2009 ident: ref46 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma doi: 10.1016/j.geoderma.2009.10.007 – volume: 22 start-page: 127 year: 2013 ident: ref51 article-title: Mapping efficiency and information content publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2012.02.005 – volume: 33 start-page: 1301 issue: 10 year: 2007 ident: ref33 article-title: About regression-kriging: from equations to case studies publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2007.05.001 – volume: 466 start-page: 558 issue: 7306 year: 2010 ident: ref2 article-title: Monitoring the world’s agriculture publication-title: Nature doi: 10.1038/466558a – volume: 15 start-page: 1 year: 2007 ident: ref23 article-title: Infrared spectroscopy—enabling an evidence based diagnostic survellance approach to agricultural and environmental management in developing countries publication-title: Journal of Near Infrared Spectroscopy doi: 10.1255/jnirs.716 – volume: 191 start-page: 431 issue: 3 year: 2006 ident: ref7 article-title: Knowledge discovery from models of soil properties developed through data mining publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2005.05.021 – year: 2009 ident: ref35 article-title: Springer series in statistics – volume: 189 start-page: 153 year: 2012 ident: ref17 article-title: Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale publication-title: Geoderma doi: 10.1016/j.geoderma.2012.05.026 – volume: 56 start-page: 147 year: 2010 ident: ref3 article-title: Soil mapping in Africa at the crossroads: work to make up for lost ground publication-title: Bulletin des Séances d’Académie Royale des Sciences d’Outre-Mer – volume: 75 start-page: 1201 year: 2011 ident: ref16 article-title: Digital Soil Mapping and Modeling at Continental Scales: Finding Solutions for Global Issues publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2011.0025 – volume: 342 start-page: 850 issue: 6160 year: 2013 ident: ref13 article-title: High-resolution global maps of 21st-century forest cover change publication-title: Science doi: 10.1126/science.1244693 – ident: ref40 doi: 10.1201/b16500-13 – year: 2006 ident: ref42 article-title: The Land Degradation Surveillance Framework – volume: 211–212 start-page: 138 issue: 0 year: 2013 ident: ref6 article-title: Harmonisation of the soil map of Africa at the continental scale publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.007 – ident: ref29 – year: 2001 ident: ref34 article-title: Linear Models for Multivariate, Time Series, and Spatial Data – volume: 514 start-page: 434 issue: 7523 year: 2014 ident: ref15 article-title: China: Open access to Earth land-cover map publication-title: Nature doi: 10.1038/514434c – volume: 124 start-page: 383 issue: 3–4 year: 2004 ident: ref49 article-title: Australia-wide predictions of soil properties using decision trees publication-title: Geoderma – volume: 2 start-page: 18 issue: 3 year: 2002 ident: ref45 article-title: Classification and Regression by randomForest publication-title: R News – ident: ref48 – volume: 9 start-page: e105992 year: 2014 ident: ref21 article-title: SoilGrids1km—Global Soil Information Based on Automated Mapping publication-title: PLoS ONE doi: 10.1371/journal.pone.0105992 – ident: ref19 – volume: vol. 37 start-page: 1 year: 2011 ident: ref8 article-title: Handbook of Soil Science – volume: 34 start-page: 710 issue: 4 year: 2004 ident: ref25 article-title: Terra and Aqua MODIS products available from NASA GES DAAC publication-title: Advances in Space Research doi: 10.1016/j.asr.2004.03.012 – start-page: 315 year: 2008 ident: ref50 article-title: Profiles in the History of the U.S. Soil Survey – volume: 63 issue: 12 year: 2015 ident: ref28 article-title: Model-Based Geostatistics the Easy Way publication-title: Journal of Statistical Software doi: 10.18637/jss.v063.i12 – volume: 6 start-page: 427 issue: 5 year: 2013 ident: ref14 article-title: Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error publication-title: International Journal of Digital Earth doi: 10.1080/17538947.2013.786146 – volume: 57 start-page: 241 issue: 4 year: 2003 ident: ref26 article-title: The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/S0924-2716(02)00124-7 – year: 2014 ident: ref4 article-title: Africa agriculture status reports – volume: 21 start-page: 10 year: 2014 ident: ref24 article-title: Soil spectroscopy: an opportunity to be seized publication-title: Global change biology doi: 10.1111/gcb.12632 – volume: 235–236 start-page: 59 issue: 0 year: 2014 ident: ref18 article-title: Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method publication-title: Geoderma doi: 10.1016/j.geoderma.2014.06.032 – volume: 1 start-page: 54 issue: 1 year: 2009 ident: ref47 article-title: Easier parallel computing in R with snowfall and sfCluster publication-title: The R Journal doi: 10.32614/RJ-2009-004 – volume: 325 start-page: 680 year: 2009 ident: ref12 article-title: Digital Soil Map of the World publication-title: Science doi: 10.1126/science.1175084 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: ref36 article-title: Random forests publication-title: Machine learning doi: 10.1023/A:1010933404324 – volume: 67 start-page: 215 issue: 3–4 year: 1995 ident: ref32 article-title: Geoderma – year: 2013 ident: ref30 article-title: Use R Series – ident: ref10 – reference: 19661405 - Science. 2009 Aug 7;325(5941):680-1 – reference: 25171179 - PLoS One. 2014;9(8):e105992 – reference: 25341776 - Nature. 2014 Oct 23;514(7523):434 – reference: 20671691 - Nature. 2010 Jul 29;466(7306):558-60 – reference: 19968396 - Psychol Methods. 2009 Dec;14(4):323-48 – reference: 18647401 - BMC Bioinformatics. 2008;9:319 – reference: 24832363 - Glob Chang Biol. 2015 Jan;21(1):10-1 – reference: 24233722 - Science. 2013 Nov 15;342(6160):850-3 |
SSID | ssj0053866 |
Score | 2.6470194 |
Snippet | 80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year... |
SourceID | plos doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0125814 |
SubjectTerms | Acidity Africa Agricultural land Agricultural management Agriculture Agroforestry Algorithms Aluminum Arable land Artificial intelligence Bulk density Cation exchanging Cation-exchange capacity Datasets Decision making models Environmental Monitoring - methods Forests Information services Management Mapping Mathematical models Models, Theoretical Nutrients Nutrients in soil Organic carbon Organic farming Predictions Remote sensing Silt Soil - chemistry Soil fertility Soil improvement Soil management Soil mapping Soil nutrients Soil profiles Soil properties Soil sciences Spectrum analysis Surveillance Taxonomy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlyqAm0JL7lSD-UQSBw7jrkBKkKVqCoeErfIjm1YaUkQyR767zsTe1e7CIlLr7ETx-PPnhmP_Q0h3z1oYSGVTgtfmZTLwqYGtEKqhOMKc0IWHu8OX_0uL-_4r3txv5TqC8-EBXrgILhjJMCz0IzNjOVcVcq4wipWudwa5t3I8wk6b-5MhTUYZnFZxotyhcyP47gcPXetO4IlWVQ5X1FEI18_8ptOu_4tW_P1kcklHXTxiXyMxiM9DT-9QT64dpNsxOnZ0x-RQ_pwi3RXGokXHuhNN5nSP7jj_oLUqbTzNKQGonqgYJjQJ4o7-AF_J_Rat7Z7opiwsx96ejN5aPEsEYh_-peGDQhHI6cTfBajPCNwP5O7i5-355dpzK2QNkKxIeVaZNpK0egKVjuptWaWu9KyTHvjhAfhGqudZFDB28w7XpaNVrmrWGFFw4svZK0FaW4TqqVBkjbBvVA883llwY3jjZVgOzSsKRNSzAVdN5F4HPNfTOsxmibBAQniq3F46jg8CUkXbz0H4o136p_hGC7qIm32-ADAVEcw1e-BKSHbiIB5A32NVEIYey5VQvbmqHi7-NuiGCYoRl1067pZqANeL5hCCfkaQLT4SXBfc7CBoV25Aq-VXqyWtJPHkQQc3Gpku9v5H93eJetgBwo8AcfEHlkbXmZuH2ytwRyM0-ofiwksNQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9UwFA9jvuiDuPmx6pQIPuhDL_1ImkYQmeIYwhVxXthbSZrk7kLXzrYD9997TpsWr1z1tUnaJjkn55yc5Pcj5JUDK8yFVGHqch0ykZpQg1UIJbdMIidk6vDu8PJLdrZiny_4xR6ZOFv9AHY7Qzvkk1q11eLnj9v3oPDvBtYGEU-NFtdNbRew4PIcma3vgG0SqKpLNucVQLuzzF-g-1vLLQM14Pgj7mnVdLt80D-PUv5mm04fkPveqaQnoxQckD1bH5J7J-vWA2vYQ3Lglbijrz3S9JuHpFkqhGdY0_NmU9GvuC_fIsAqbRwdCYSo6im4L_SK4j7_KKVv6TdVm-aKIq1n13f0fLOu8cQRTFJ1S8dtCks98hO8FnNBg3g_IqvTT98_noWegSEsuUz6kCkeKSN4qXJYE4VSKjHMZiaJlNOWO6MTbZQVCVRwJnKWZVmpZGzzJDW8ZOljsl_D2B4RqoRGKDfOHJcscnFuINhjpRHgYZRJmQUknYa9KD08ObJkVMWQcxMQpoyDWeBkFX6yAhLOra5HeI7_1P-AMzrXRXDt4UHTrguvqwViLhqQbBNpw5jMpbapkUluY-ivs2lAjlAepg90BQIOYYY6kwE5nmRkd_HLuRjUGHMzqrbNzVgHYmNwmALyZBSp-SchyI3BU4bvii1h2-rFdkm9uRygwiH4Rky8p__-rWfkLviBHE_AJfyY7PftjX0OvlavXwzq8wtp-yz9 priority: 102 providerName: Scholars Portal |
Title | Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26110833 https://www.proquest.com/docview/1691280669 https://www.proquest.com/docview/1691601242 https://pubmed.ncbi.nlm.nih.gov/PMC4482144 https://doaj.org/article/5060dccad0bd44989be3d928e1db2fe3 http://dx.doi.org/10.1371/journal.pone.0125814 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvcAB0fJooKyMxAEOafOwY5sLaqtdKqStqpZKe4uc2F5W2ibLJj1w4bczk3gDiyq4-BA7ieOZseeVbwh55-AU5kLpMHWyCJlITVjAqRAqbpnCmpCpw3-HpxfZ-Q37MuMz73BrfFrlZk_sNmpTl-gjP0ZQF4wCZurT6nuIVaMwuupLaDwkuwhdhildYjYYXCDLWeZ_l0tFfOypc7SqK3sEGzOXMds6jjrUfkQ5XdbNfRrn34mTf5xEk6fkiVch6UlP8z3ywFb75PHJfO1hNOw-2fMi29D3Hlf6wzNSTzWCMczpdb1Y0kv0wq8RTpXWjvblgqhuKSgr9JaiV7_nyY_0SlemvqVYxLNpG3q9mFeYXwQkWf6gvVPCUo_zBI_FyE_HzM_JzWT89ew89PUWwpKrpA2Z5pE2gpdawg4otNaJYTYzSaRdYbkzRVIYbUUCA5yJnGVZVmoVW5mkhpcsfUF2KljbA0K1KBC4jTPHFYtcLA2Ydqw0AvSJMimzgKSbZc9LD0aONTGWeRdhE2CU9IuZI7FyT6yAhMNdqx6M4z_jT5Giw1iE0u4u1Ot57iUzR4RFA3xsosIwpqQqbGpUIm0M3-tsGpAD5IfNC5r8NycG5HDDI_d3vx26QWgxEqMrW9_1Y8ASBvUoIC97lhomCSZtDHoxvFdsMdvWV2z3VItvHTA4mNqIgPfq39N6TR6B1scx3y3hh2SnXd_ZN6BZtcWoEx9o5VmM7eTziOyeji8ur0adrwLaKZPY_hz_ApJfLYQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHipZHUwoYCSQ4pE0cO06QECqPaku7FaKttLfgxPay0jZZNqlQ_xS_kZnEWVhUwanX2Ikdz9tjf0PIcwtWWMhU-ZFNcp_LSPs5WAU_FYanWBMysnh3eHgcD874p5EYrZCf_V0YPFbZ68RWUeuqwD3yXQR1wSxgnL6dffexahRmV_sSGh1bHJrLHxCy1W8OPgB9XzC2__H0_cB3VQX8QqSs8bkSgdJSFCoBOZdKKaa5iTULlM2NsDpnuVZGMuhgdWANj-NCpaFJWKRFwSP47g1yEwxvgBIlR4sAD3RHHLvreZEMdx037Myq0uyAIRBJyJfMX1slAFFVp1V9lYf790HNPyzf_l2y5lxWutfx2DpZMeUGubM3njvYDrNB1p2KqOlLh2P96h6phgrBH8b0pJpM6Wfc9Z8jfCutLO3KE1HVUHCO6DnFLEInA6_pF1Xq6pxi0dC6qenJZFzieSZggekl7TZBDHW4UvBZzDS1wnOfnF0LJR6Q1RLWdpNQJXMEihPcipQHNkw0hJK80BL8l4IVsUeiftmzwoGfYw2OadZm9CQEQd1iZkiszBHLI_7irVkH_vGf_u-Qoou-CN3dPqjm48xpggwRHTXIjQ5yzXmapLmJdMoSE8L_WhN5ZBP5oR-gzn5zvke2ex65uvnZohmUBGZ-VGmqi64PRN7gjnnkYcdSi0lCCB2CHw7jyiVmW_qL5ZZy8q0FIofQHhH3tv49rafk1uB0eJQdHRwfPiK3weMUeNaOiW2y2swvzGPw6pr8SStKlHy9btn9BbQDZwA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISF4QGx8rDDASCDBQ9bGseMECaHBmDbGpokxqW_Bie1SqUtK0wntX-Ov4y5xCkUTPO01dr58377z7wCeO7TCUqU6iFySB0JFJsjRKgSptCKlnpCRo7PDh0fx3qn4OJTDFfjZnYWhsspOJzaK2lQF7ZH3CdSFsoBx2ne-LOJ4Z_ft9HtAHaQo09q102hZ5MBe_MDwrX6zv4O0fsH57ocv7_cC32EgKGTK54HQcqCNkoVOUOaV1pobYWPDB9rlVjqT89xoqzhOcGbgrIjjQqehTXhkZCEifO41uK4iGZKMqeEi2EM9Esf-qF6kwr7njK1pVdotNAoyCcWSKWw6BhDC6qSqL_N2_y7a_MMK7t6B2959Zdstv63Bii3X4db2aOYhPOw6rHl1UbOXHtP61V2oDjUBQYzYSTWesGPKAMwIypVVjrWtipieM3SU2BmjjEIrD6_ZZ12a6oxRA9F6XrOT8aik2iZkh8kFazdELPMYU_hYyjo1gnQPTq-EEvdhtcS13QCmVU6gcVI4mYqBCxODYaUojEJfpuBF3IOoW_as8EDo1I9jkjXZPYUBUbuYGREr88TqQbC4a9oCgfxn_jui6GIuwXg3F6rZKPNaISN0R4MyZAa5ESJN0txGJuWJDfF_nY16sEH80L2gzn5LQQ82Ox65fPjZYhgVBmWBdGmr83YORuHomvXgQctSi4_EcDpEnxzfq5aYbekvlkfK8bcGlBzDfELfe_jvz3oKN1Bqs0_7RweP4CY6n5LK7rjchNX57Nw-Rgdvnj9pJInB16sW3V8J0Ws2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Soil+Properties+of+Africa+at+250+m+Resolution%3A+Random+Forests+Significantly+Improve+Current+Predictions&rft.jtitle=PloS+one&rft.au=Hengl%2C+Tomislav&rft.au=Heuvelink%2C+Gerard+B+M&rft.au=Kempen%2C+Bas&rft.au=Leenaars%2C+Johan+G+B&rft.date=2015-06-25&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=10&rft.issue=6&rft.spage=e0125814&rft_id=info:doi/10.1371%2Fjournal.pone.0125814&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3726800021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |