Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions

80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridg...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 10; no. 6; p. e0125814
Main Authors Hengl, Tomislav, Heuvelink, Gerard B. M., Kempen, Bas, Leenaars, Johan G. B., Walsh, Markus G., Shepherd, Keith D., Sila, Andrew, MacMillan, Robert A., Mendes de Jesus, Jorge, Tamene, Lulseged, Tondoh, Jérôme E.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 25.06.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: R. A. MacMillan is owner and retired principal of LandMapper Environmental Solutions Inc. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.
Conceived and designed the experiments: TH GH BK MW KS. Performed the experiments: MW KS AS LT JT. Analyzed the data: TH GH BK JJ AS RM. Contributed reagents/materials/analysis tools: JL MW KS AS LT JT. Wrote the paper: TH GH RM MW.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0125814