Fetal heart rate deceleration detection using a discrete cosine transform implementation of singular spectrum analysis

To develop a singular-spectrum analysis (SSA) based change-point detection algorithm applicable to fetal heart rate (FHR) monitoring to improve the detection of deceleration events. We present a method for decomposing a signal into near-orthogonal components via the discrete cosine transform (DCT) a...

Full description

Saved in:
Bibliographic Details
Published inMethods of information in medicine Vol. 46; no. 2; p. 196
Main Authors Warrick, P A, Precup, D, Hamilton, E F, Kearney, R E
Format Journal Article
LanguageEnglish
Published Germany 01.01.2007
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:To develop a singular-spectrum analysis (SSA) based change-point detection algorithm applicable to fetal heart rate (FHR) monitoring to improve the detection of deceleration events. We present a method for decomposing a signal into near-orthogonal components via the discrete cosine transform (DCT) and apply this in a novel online manner to change-point detection based on SSA. The SSA technique forms models of the underlying signal that can be compared over time; models that are sufficiently different indicate signal change points. To adapt the algorithm to deceleration detection where many successive similar change events can occur, we modify the standard SSA algorithm to hold the reference model constant under such conditions, an approach that we term "base-hold SSA". The algorithm is applied to a database of 15 FHR tracings that have been preprocessed to locate candidate decelerations and is compared to the markings of an expert obstetrician. Of the 528 true and 1285 false decelerations presented to the algorithm, the base-hold approach improved on standard SSA, reducing the number of missed decelerations from 64 to 49 (21.9%) while maintaining the same reduction in false-positives (278). The standard SSA assumption that changes are infrequent does not apply to FHR analysis where decelerations can occur successively and in close proximity; our base-hold SSA modification improves detection of these types of event series.
ISSN:0026-1270
DOI:10.1055/s-0038-1625406