背负式割草机刀盘轻量化设计与试验

针对背负式割草机刀盘轻量化设计问题,选取市场上常见的2、3、40齿锰钢刀盘进行研究。首先运用3维机械制图软件PTC/Creo对刀盘进行数字模型绘制,其次基于拓扑优化变密度法和杂草刈割试验,在6000 r/min极限转速工况下对刀盘结构进行计算机拓扑优化,并对优化前后刀盘应力进行受力分析,3种刀盘优化后质量依次减轻27.5%、10.24%和12.71%,而极限受力大小依次减小11.3%、0.8%和6.8%,得出刀盘质量减轻百分比大于极限受力减小百分比的结论。优化后刀盘模态频率有所增加,抗振性能增强。最后通过田间割草对比试验验证3种刀盘结构优化后割草性能符合行业要求,并得出重割率与刀盘齿数呈正相关...

Full description

Saved in:
Bibliographic Details
Published in江西农业学报 Vol. 30; no. 1; pp. 101 - 107
Main Author 雷哓晖;吕晓兰;张美娜;杨青松;蔺经
Format Journal Article
LanguageChinese
Published 江苏省农业科学院 农业设施与装备研究所,江苏 南京,210014%江苏省农业科学院 果树研究所,江苏 南京,210014 2018
Subjects
Online AccessGet full text
ISSN1001-8581
DOI10.19386/j.cnki.jxnyxb.2018.01.22

Cover

More Information
Summary:针对背负式割草机刀盘轻量化设计问题,选取市场上常见的2、3、40齿锰钢刀盘进行研究。首先运用3维机械制图软件PTC/Creo对刀盘进行数字模型绘制,其次基于拓扑优化变密度法和杂草刈割试验,在6000 r/min极限转速工况下对刀盘结构进行计算机拓扑优化,并对优化前后刀盘应力进行受力分析,3种刀盘优化后质量依次减轻27.5%、10.24%和12.71%,而极限受力大小依次减小11.3%、0.8%和6.8%,得出刀盘质量减轻百分比大于极限受力减小百分比的结论。优化后刀盘模态频率有所增加,抗振性能增强。最后通过田间割草对比试验验证3种刀盘结构优化后割草性能符合行业要求,并得出重割率与刀盘齿数呈正相关,漏割率与刀盘齿数呈负相关的结论。
Bibliography:36-1124/S
LEI Xiao-hui1,LV Xiao-lan1,ZHANG Mei-na1,YANG Qing-song2,LIN Jing2( 1. Institute of Agricultural Facility and Equipment,Jiangsu Academy of Agricultural Sciences,Nanjing 210014,China;2. Institute of Pomology,Jiangsu Academy of Agricultural Sciences,Nanjing 210014,China)
Shoulder-carrying mower;Cutting disc;Stress analysis;Topology optimization
We studied the lightweight design of common manganese-steel cutting discs(teeth number:2,3,or 40) of shoulder-carrying mower.Firstly,we used three-dimension mechanical map-making software PTC/Creo to draw the digital model of cutting discs.Then,based on the topological optimized variable density method and weed-cutting test,we optimized the structure of cutting discs at maximum rotation speed(6000 r/min) by using computer topology,and analyzed the stress on cutting discs before and after the optimization.After the optimization,the mass of 3 types of cutting discs decreased by 27.5%,10.24% and 12.71%,respectively,and their maximum stress decreased by 11.3%,0.8% an
ISSN:1001-8581
DOI:10.19386/j.cnki.jxnyxb.2018.01.22