红椿SRAP反应体系优化及引物筛选

[目的]优化相关序列扩增多态性(SRAP)体系内的不同组分,建立适用于红椿SRAP分子标记的反应体系,并进一步从SRAP引物组合中筛选出稳定、多态性好的引物组合,为红椿遗传多样性研究奠定试验基础。[方法]针对SRAP-PCR反应体系中5个因素各设置8个水平,先利用单因素试验确定浓度梯度,后在确定的梯度范围内选定4个水平,按照正交试验L^16(4^5)进行优化,结合正交直观分析法和新复极差法对各因素进行优化筛选。[结果]确定最优体系为总体系25μL,模板DNA 25 ng,上下游引物各0.3μmol·L^-1,Taq DNA聚合酶1U,Mg^2+2.5 mmol·L^-1,d NTP 0.3 m...

Full description

Saved in:
Bibliographic Details
Published in林业科学研究 Vol. 30; no. 1; pp. 10 - 17
Main Author 李培 阙青敏 王芳 李俊成 朱芹 廖柏勇 陈晓阳
Format Journal Article
LanguageChinese
Published 华南农业大学林学与风景园林学院 广东省森林植物种质创新与利用重点实验室,广东 广州,510642%嘉应学院,广东 梅州,514015 2017
Subjects
Online AccessGet full text
ISSN1001-1498
DOI10.13275/j.cnki.lykxyj.2017.01.002

Cover

More Information
Summary:[目的]优化相关序列扩增多态性(SRAP)体系内的不同组分,建立适用于红椿SRAP分子标记的反应体系,并进一步从SRAP引物组合中筛选出稳定、多态性好的引物组合,为红椿遗传多样性研究奠定试验基础。[方法]针对SRAP-PCR反应体系中5个因素各设置8个水平,先利用单因素试验确定浓度梯度,后在确定的梯度范围内选定4个水平,按照正交试验L^16(4^5)进行优化,结合正交直观分析法和新复极差法对各因素进行优化筛选。[结果]确定最优体系为总体系25μL,模板DNA 25 ng,上下游引物各0.3μmol·L^-1,Taq DNA聚合酶1U,Mg^2+2.5 mmol·L^-1,d NTP 0.3 mmol·L^-1。利用稳定的SRAP-PCR体系,从1 505对SRAP引物组合中筛选出30对优质引物组合。[结论]通过不同种源红椿基因组DNA的重复验证,获得了稳定清晰、多态性较强的扩增条带,表明所确定的最优体系稳定可靠,适用性较强,可用于不同种源红椿遗传多样性研究的后续实验。
Bibliography:LI Pei1, QUE Qing-min1, WANG Fang1, LI Jun-cheng1, ZHU Qin 2, LIAO Bo-yong1 , CHEN Xiao-yang1 ( 1. Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture South China Agricultural University, Guangzhou 510642, Guangdong, China; 2. Jiaying University, Meizhou 514015, Guangdong, China)
11-1221/S
Objective] To optimize the different components of sequence-related amplified polymorphism (SRAP) and to establish suitable SRAP-PCR system for Toona ciliata Roem. , and to select high-stability polymorphic band SRAP primer combinations. [ Method ] The experiment basis for genetic diversity of T. ciliate was established. Five factors each with eight concentration levels were screened to the suitable concentration range in the PCR reaction system using single factor experiment. After that, four levels were selected in each range of the five factors. The or- thogonal experiment of L^16 (4^5 ) was carried out for optimization. Combining wit
ISSN:1001-1498
DOI:10.13275/j.cnki.lykxyj.2017.01.002