利用温度资料和广义回归神经网络模拟参考作物蒸散量

参考作物蒸散量(reference evapotranspiration,ET0)精确模拟对水资源高效利用和灌溉制度制定具有重要意义,该文以四川盆地19个气象站点1961-1990年逐日最高、最低温度和大气顶层辐射作为输入参数,FAO-56 Penman-Monteith(PM)模型计算的ET0为标准值,建立基于广义回归神经网络(generalized regression neural network,GRNN)的ET0模拟模型,基于1991-2014年资料进行模型验证,将GRNN模型同Hargreaves(HS1)和改进Hargreaves(HS2)等简化模型的模拟结果进行比较,分析只有温...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 10; pp. 81 - 89
Main Author 冯禹 崔宁博 龚道枝 胡笑涛 张宽地
Format Journal Article
LanguageChinese
Published 南方丘区节水农业研究四川省重点实验室,成都610066%西北农林科技大学水利与建筑工程学院,杨凌,712100 2016
中国农业科学院农业环境与可持续发展研究所/作物高效用水与抗灾减损国家工程实验室/农业部旱作节水农业重点实验室,北京,100081%四川大学水力学与山区河流开发保护国家重点实验室/水利水电学院,成都610065
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.10.012

Cover

More Information
Summary:参考作物蒸散量(reference evapotranspiration,ET0)精确模拟对水资源高效利用和灌溉制度制定具有重要意义,该文以四川盆地19个气象站点1961-1990年逐日最高、最低温度和大气顶层辐射作为输入参数,FAO-56 Penman-Monteith(PM)模型计算的ET0为标准值,建立基于广义回归神经网络(generalized regression neural network,GRNN)的ET0模拟模型,基于1991-2014年资料进行模型验证,将GRNN模型同Hargreaves(HS1)和改进Hargreaves(HS2)等简化模型的模拟结果进行比较,分析只有温度资料情况下不同模型模拟ET0误差的时空变异性。结果表明:GRNN、HS1和HS2模型均方根误差(root mean square error,RMSE)分别为0.41、1.16和0.70 mm/d,模型效率系数(Ens)分别为0.88、0.13和0.67。3种模型RMSE在时空上均呈现HS1〉HS2〉GRNN、Ens均呈现GRNN〉HS2〉HS1趋势;与PM模型模拟结果相比,GRNN、HS1和HS2模型模拟结果分别偏大0.8%、45.1%和17.3%。在时空尺度上的误差分析均表明利用温度资料建立的GRNN模型能够较为准确地模拟四川盆地ET0,因此可以作为资料缺失情况下ET0模拟的推荐模型。该研究可为四川盆地作物需水精确预测提供科学依据。
Bibliography:11-2047/S
Feng Yu, Cui Ningbo, Gong Daozhi, Hu Xiaotao, Zhang Kuandi (1. State Key Engineering Laboratory of Crops Efficient Water Use and Drought Mitigation Key Laboratory of Dryland Agriculture of Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2. State Key Laboratory of Hydraulics and Mountain River Engineering / College of Water Resource and Hydropower, Sichuan University Chengdu 610065, China; 3. Provincial Key Laboratory of Water-Saving A griculture in Hill Areas of Southern China, Chengdu 610066, China; 4. College of Water Resources and A rchitectural Engineering, Northwest A &F University, Yangling 712100, China)
temperature; models; agriculture; reference evapotranspiration; temperature data; Penman-Monteith model; generalized regression neural network; performance of model
As the only connecting parameter between energy balance and water balance, evapotranspiration(ET) is the most excellent in
ISSN:1002-6819
DOI:10.11975/j.issn.1002-6819.2016.10.012