The kinetic energy of PAH dication and trication dissociation determined by recoil-frame covariance map imaging
We investigated the dissociation of dications and trications of three polycyclic aromatic hydrocarbons (PAHs), fluorene, phenanthrene, and pyrene. PAHs are a family of molecules ubiquitous in space and involved in much of the chemistry of the interstellar medium. In our experiments, ions are formed...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 24; no. 38; pp. 2396 - 2315 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
05.10.2022
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We investigated the dissociation of dications and trications of three polycyclic aromatic hydrocarbons (PAHs), fluorene, phenanthrene, and pyrene. PAHs are a family of molecules ubiquitous in space and involved in much of the chemistry of the interstellar medium. In our experiments, ions are formed by interaction with 30.3 nm extreme ultraviolet (XUV) photons, and their velocity map images are recorded using a PImMS2 multi-mass imaging sensor. Application of recoil-frame covariance analysis allows the total kinetic energy release (TKER) associated with multiple fragmentation channels to be determined to high precision, ranging 1.94-2.60 eV and 2.95-5.29 eV for the dications and trications, respectively. Experimental measurements are supported by Born-Oppenheimer molecular dynamics (BOMD) simulations.
The kinetic energy of dissociation of polycyclic aromatic hydrocarbons is determined by application of recoil-frame covariance imaging analysis to velocity map images. |
---|---|
Bibliography: | https://doi.org/10.1039/d2cp02252d Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1463-9076 1463-9084 1463-9084 |
DOI: | 10.1039/d2cp02252d |