Discovery, characterization and potential roles of a novel NF-YAx splice variant in human neuroblastoma

Identification of novel cancer-associated splice variants is of potential diagnostic, prognostic and therapeutic importance. NF-Y transcription factor is comprised of NF-YA, NF-YB and NF-YC subunits, binds inverted CCAAT-boxes in ≈70% of gene promoters, regulates > 1000 cancer-associated genes an...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental & clinical cancer research Vol. 38; no. 1; pp. 482 - 25
Main Authors Cappabianca, Lucia, Farina, Antonietta Rosella, Di Marcotullio, Lucia, Infante, Paola, De Simone, Daniele, Sebastiano, Michela, Mackay, Andrew Reay
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 05.12.2019
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Identification of novel cancer-associated splice variants is of potential diagnostic, prognostic and therapeutic importance. NF-Y transcription factor is comprised of NF-YA, NF-YB and NF-YC subunits, binds inverted CCAAT-boxes in ≈70% of gene promoters, regulates > 1000 cancer-associated genes and proteins involved in proliferation, staminality, differentiation, apoptosis, metabolism and is subject to component alternative splicing. RT-PCR evaluation of alternative NF-YA splicing in primary human neuroblastomas (NBs), led to discovery of a novel NF-YAx splice variant, also expressed during mouse embryo development and induced by doxorubicin in NB cells. Here, we report the discovery and characterisation of NF-YAx and discus its potential roles in NB. NF-YAx cDNA was RT-PCR-cloned from a stage 3 NB (provided by the Italian Association of Haematology and Paediatric Oncology, Genova, IT), sequenced and expressed as a protein using standard methods and compared to known fully-spliced NF-YAl and exon B-skipped NF-YAs isoforms in: EMSAs for capacity to form NF-Y complexes; by co-transfection, co-immunoprecipitation and Western blotting for capacity to bind Sp1; by IF for localisation; in AO/EtBr cell-death and colony formation assays for relative cytotoxicity, and by siRNA knockdown, use of inhibitors and Western blotting for potential mechanisms of action. Stable SH-SY5Y transfectants of all three NF-YA isoforms were also propagated and compared by RT-PCR and Western blotting for differences in cell-death and stem cell (SC)-associated gene expression, in cell-death assays for sensitivity to doxorubicin and in in vitro proliferation, substrate-independent growth and in vivo tumour xenograft assays for differences in growth and tumourigenic capacity. NF-YAx was characterized as a novel variant with NF-YA exons B, D and partial F skipping, detected in 20% of NF-YA positive NBs, was the exclusive isoform in a stage 3 NB, expressed in mouse stage E11.5-14 embryos and induced by doxorubicin in SH-SY5Y NB cells. The NF-YAx protein exhibited nuclear localisation, competed with other isoforms in CCAAT box-binding NF-Y complexes but, in contrast to other isoforms, did not bind Sp1. NF-YAx expression in neural-related progenitor and NB cells repressed Bmi1 expression, induced KIF1Bβ expression and promoted KIF1Bβ-dependent necroptosis but in NB cells also selected tumourigenic, doxorubicin-resistant, CSC-like sub-populations, resistant to NF-YAx cytotoxicity. The discovery of NF-YAx in NBs, its expression in mouse embryos and induction by doxorubicin in NB cells, unveils a novel NF-YA splice mechanism and variant, regulated by and involved in development, genotoxic-stress and NB. NF-YAx substitution of other isoforms in NF-Y complexes and loss of capacity to bind Sp1, characterises this novel isoform as a functional modifier of NF-Y and its promotion of KIF1Bβ-dependent neural-lineage progenitor and NB cell necroptosis, association with doxorubicin-induced necroptosis and expression in mouse embryos coinciding with KIF1Bβ-dependent sympathetic neuroblast-culling, confirm a cytotoxic function and potential role in suppressing NB initiation. On the other hand, the in vitro selection of CSC-like NB subpopulations resistant to NF-YAx cytotoxicity not only helps to explain high-level exclusive NF-YAx expression in a stage 3 NB but also supports a role for NF-YAx in disease progression and identifies a potential doxorubicin-inducible mechanism for post-therapeutic relapse.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1756-9966
0392-9078
1756-9966
DOI:10.1186/s13046-019-1481-8