Property-Composition-Temperature Modeling of Waste Glass Melt Data Subject to a Randomization Restriction

Properties such as viscosity and electrical conductivity of glass melts are functions of melt temperature as well as glass composition. When measuring such a property for several compositions, the property is typically measured at several temperatures for one composition, then at several temperature...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 91; no. 10; pp. 3222 - 3228
Main Authors Piepel, Greg F., Heredia-Langner, Alejandro, Cooley, Scott K.
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.10.2008
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Properties such as viscosity and electrical conductivity of glass melts are functions of melt temperature as well as glass composition. When measuring such a property for several compositions, the property is typically measured at several temperatures for one composition, then at several temperatures for the next composition, and so on. This data collection process involves a restriction on randomization, which is referred to as a split‐plot experiment. The split‐plot data structure must be accounted for in developing property–composition–temperature models and the corresponding uncertainty equations for model predictions. Instead of ordinary least squares (OLS) regression methods, generalized least squares (GLS) regression methods using restricted maximum likelihood (REML) estimation must be used. This article summarizes the methodology for developing property–composition–temperature models and corresponding prediction uncertainty equations using the GLS/REML regression approach. Viscosity data collected on 197 simulated nuclear waste glasses are used to sequentially develop a viscosity‐composition‐temperature model. The final model has 29 terms in 15 components, reduced from the initial model of 44 terms in 22 components. For the initial model, the correct results using GLS/REML regression are compared with the incorrect results obtained using OLS regression.
AbstractList Properties such as viscosity and electrical conductivity of glass melts are functions of melt temperature as well as glass composition. When measuring such a property for several compositions, the property is typically measured at several temperatures for one composition, then at several temperatures for the next composition, and so on. This data collection process involves a restriction on randomization, which is referred to as a split-plot experiment. The split-plot data structure must be accounted for in developing property-composition-temperature models and the corresponding uncertainty equations for model predictions. Instead of ordinary least squares (OLS) regression methods, generalized least squares (GLS) regression methods using restricted maximum likelihood (REML) estimation must be used. This article summarizes the methodology for developing property-composition-temperature models and corresponding prediction uncertainty equations using the GLS-REML regression approach. Viscosity data collected on 197 simulated nuclear waste glasses are used to sequentially develop a viscosity-composition-temperature model. The final model has 29 terms in 15 components, reduced from the initial model of 44 terms in 22 components. For the initial model, the correct results using GLS-REML regression are compared with the incorrect results obtained using OLS regression.
The methodology for developing property-composition-temperature models and corresponding prediction uncertainty equations using the generalised least squares (GLS)/restricted maximum likelihood (REML) regression approach is summarised. Viscosity data collected on 197 simulated nuclear waste glasses were used to sequentially develop a viscosity-composition-temperature model. The final model had 29 terms in 15 components, reduced from the initial model of 44 terms in 22 components. For the initial model, the correct results using GLS/REML regression were compared with the incorrect results obtained using ordinary least squares regression. 16 refs.
Properties such as viscosity and electrical conductivity of glass melts are functions of melt temperature as well as glass composition. When measuring such a property for several glasses, the property is typically measured at several temperatures for one glass, then at several temperatures for the next glass, and so on. This data-collection process involves a restriction on randomization, which is referred to as split-plot experiment. The split-plot data structure must be accounted for in developing property-composition-temperature models and the corresponding uncertainty equations for model predictions. Instead of ordinary least squares (OLS) regression methods, generalized least squares (GLS) regression methods using restricted maximum likelihood (REML) estimation must be used. This article describes the methodology for developing property-composition-temperature models and corresponding prediction uncertainty equations using the GLS/REML regression approach. Viscosity data collected on 197 simulated nuclear waste glasses are used to illustrate the GLS/REML methods for developing a viscosity-composition-temperature model and corresponding equations for model prediction uncertainties. The correct results using GLS/REML regression are compared to the incorrect results obtained using OLS regression.
Properties such as viscosity and electrical conductivity of glass melts are functions of melt temperature as well as glass composition. When measuring such a property for several compositions, the property is typically measured at several temperatures for one composition, then at several temperatures for the next composition, and so on. This data collection process involves a restriction on randomization, which is referred to as a split-plot experiment. The split-plot data structure must be accounted for in developing property-composition-temperature models and the corresponding uncertainty equations for model predictions. Instead of ordinary least squares (OLS) regression methods, generalized least squares (GLS) regression methods using restricted maximum likelihood (REML) estimation must be used. This article summarizes the methodology for developing property-composition-temperature models and corresponding prediction uncertainty equations using the GLS/REML regression approach. Viscosity data collected on 197 simulated nuclear waste glasses are used to sequentially develop a viscosity-composition-temperature model. The final model has 29 terms in 15 components, reduced from the initial model of 44 terms in 22 components. For the initial model, the correct results using GLS/REML regression are compared with the incorrect results obtained using OLS regression. [PUBLICATION ABSTRACT]
Author Heredia-Langner, Alejandro
Cooley, Scott K.
Piepel, Greg F.
Author_xml – sequence: 1
  givenname: Greg F.
  surname: Piepel
  fullname: Piepel, Greg F.
  email: greg.piepel@pnl.gov
  organization: Statistics and Sensor Analytics, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352
– sequence: 2
  givenname: Alejandro
  surname: Heredia-Langner
  fullname: Heredia-Langner, Alejandro
  organization: Statistics and Sensor Analytics, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352
– sequence: 3
  givenname: Scott K.
  surname: Cooley
  fullname: Cooley, Scott K.
  organization: Statistics and Sensor Analytics, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20759709$$DView record in Pascal Francis
https://www.osti.gov/biblio/946647$$D View this record in Osti.gov
BookMark eNqNkkFz1CAUxzNOnXFb_Q7ojI6XRCBAwkWnxnbVadVZqz0yhCVKmoQVyHTXTy_ZdPbQg1MuvAe_9-fBn-PkaLCDThKAYIbieNNmiFKUYo5YhiEsM4gph9n2UbI4bBwlCwghTosSwyfJsfdtTBEvySIx35zdaBd2aWX7jfUmGDukV7qPizKMToNLu9adGX4B24Br6YMGy056Dy51F8AHGST4PtatVgEECyRYyWFte_NXTkJgpX1wRk3x0-RxIzuvn93NJ8mP87Or6mN68XX5qTq9SBXlCKaSN0SxWmlKyjwGXDHIdQ2LQrEGU9VAwsockVojLBuyVoTWrJZE1XW9ZjXMT5Lns671wQivTNDqt7LDEFsUnDBGisi8mpmNs3_G2KPojVe66-Sg7ehFziDhrCwj-Pq_IIIlxhAhxiL64h7a2tEN8aoCo4ITgjGN0Ms7SHolu8bJQRkvNs700u0EhgXlBeSRK2dOOeu9080BQVBMvotWTPaKyV4x-S72vottLH17rzQ-wd6N4KTpHiLwbha4NZ3ePfhg8fm0OtvHUSGdFUz8LtuDgnQ3ghV5QcX1l6WgFeJ4-XMl3uf_AD8u2GI
CODEN JACTAW
CitedBy_id crossref_primary_10_1016_j_jnoncrysol_2022_121832
crossref_primary_10_1016_j_jnoncrysol_2016_01_007
crossref_primary_10_1016_j_jnoncrysol_2024_123119
crossref_primary_10_1111_jace_19333
crossref_primary_10_1016_j_jhazmat_2023_132437
crossref_primary_10_1080_21870764_2021_2012903
Cites_doi 10.1080/16843703.2007.11673155
10.1080/00224065.2002.11980160
10.1002/9781118204221
10.1137/1.9780898718393
10.1198/004017002753398344
10.1080/00224065.2006.11918603
10.1080/00224065.2004.11980249
10.1198/00401700152404291
10.1198/004017002188618725
ContentType Journal Article
Copyright 2008 Battelle Memorial Institute
2008 INIST-CNRS
Copyright American Ceramic Society Oct 2008
Copyright_xml – notice: 2008 Battelle Memorial Institute
– notice: 2008 INIST-CNRS
– notice: Copyright American Ceramic Society Oct 2008
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID BSCLL
AAYXX
CITATION
IQODW
7QQ
7SR
8FD
JG9
OTOTI
DOI 10.1111/j.1551-2916.2008.02590.x
DatabaseName Istex
CrossRef
Pascal-Francis
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList Materials Research Database
Materials Research Database

CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
Applied Sciences
EISSN 1551-2916
EndPage 3228
ExternalDocumentID 946647
1579195171
20759709
10_1111_j_1551_2916_2008_02590_x
JACE02590
ark_67375_WNG_5C192GVR_B
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
7QQ
7SR
8FD
JG9
08R
AAJUZ
ABCVL
ABHUG
ABPTK
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
G8K
OTOTI
PK8
PQEST
UMP
ID FETCH-LOGICAL-c5910-a9f4c6bce5483c6b9c609eb077c6f25cf0468314be12af4dc45b6ba4cbbbd6b03
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Thu May 18 18:37:33 EDT 2023
Thu Jul 10 17:51:57 EDT 2025
Fri Jul 11 15:50:33 EDT 2025
Fri Jul 25 19:14:23 EDT 2025
Mon Jul 21 09:11:58 EDT 2025
Thu Apr 24 22:54:45 EDT 2025
Tue Jul 01 00:21:44 EDT 2025
Wed Jan 22 16:29:50 EST 2025
Wed Oct 30 09:56:06 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Randomization
Property composition relationship
Waste treatment
Glass waste
Glass
Temperature effect
Theoretical study
Composition effect
Manufacturing
Glass melt
Fabrication property relation
Modeling
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5910-a9f4c6bce5483c6b9c609eb077c6f25cf0468314be12af4dc45b6ba4cbbbd6b03
Notes istex:B2BB2DA04E993E571441A75AECC7B9C43E851933
ArticleID:JACE02590
ark:/67375/WNG-5C192GVR-B
I. Tanaka—contributing editor
This work was conducted in the Waste Treatment Plant Support Program at the Pacific Northwest National Laboratory. The work was performed under Contract DE‐AC05‐76RL01830 with the U. S. Department of Energy and MOA #24590‐QL‐HC9‐WA49‐00001 with Bechtel National, Inc., the lead contractor on the Waste Treatment and Immobilization Plant at the Hanford Site near Richland, WA.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PNNL-SA-58808
USDOE
AC05-76RL01830
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1551-2916.2008.02590.x
PQID 217944225
PQPubID 23500
PageCount 7
ParticipantIDs osti_scitechconnect_946647
proquest_miscellaneous_36049688
proquest_miscellaneous_1082201166
proquest_journals_217944225
pascalfrancis_primary_20759709
crossref_primary_10_1111_j_1551_2916_2008_02590_x
crossref_citationtrail_10_1111_j_1551_2916_2008_02590_x
wiley_primary_10_1111_j_1551_2916_2008_02590_x_JACE02590
istex_primary_ark_67375_WNG_5C192GVR_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2008
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: October 2008
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: Malden,MA
– name: Columbus
– name: United States
PublicationTitle Journal of the American Ceramic Society
PublicationYear 2008
Publisher Blackwell Publishing Inc
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Inc
– name: Blackwell
– name: Wiley Subscription Services, Inc
References G. F. Piepel, S. K. Cooley, A. Heredia-Langner, S. M. Landmesser, W. K. Kot, H. Gan, and I. L. Pegg, IHLW PCT, Spinel T1%, Electrical Conductivity, and Viscosity Model Development, VSL-07R1240-4, Rev. 0, Vitreous State Laboratory. The Catholic University of America, Washington, DC.
JMP, JMP Release 7. SAS Institute, Inc, Cary, NC, 2007.
D. R. Bingham and R. R. Sitter, "Fractional Factorial Split-Plot Designs for Robust Parameter Experiments," Technometrics, 45 [1] 80-9 (2003).
G. F. Piepel, J. M. Szychowski, and J. L. Loeppky, "Augmenting Scheffé Linear Mixture Models with Squared and/or Crossproduct Terms," J. Qual. Tech., 34 [3] 297-314 (2002).
P. Goos and M. Vanderbroek, "Outperforming Completely Randomized Designs," J. Qual. Tech., 36 [1] 12-26 (2004).
D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression Analysis, 3rd edition, John Wiley and Sons, New York, 2001.
J. A. Cornell, Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data, 3rd edition, John Wiley, New York, 2002.
S. M. Kowalski, J. A. Cornell, and G. G. Vining, "Split-Plot Designs and Estimation Methods for Mixture Experiments With Process Variables," Technometrics, 44 [1] 72-9 (2002).
H. Gan and I. L. Pegg, Development of Property-Composition Models for RPP-WTP HLW Glasses, VSL-01R3600-1, Rev. 0, Vitreous State Laboratory. The Catholic University of America, Washington, DC, 2001.
R. Ihaka and R. Gentleman, "R: A Language for Data Analysis and Graphics," J. Comp. Graph. Stat., 5 [3] 299-314 (1996).
R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2006 URL http://www.R-project.org.
P. Goos, I. Langhans, and M. Vandebroek, "Practical Inference from Industrial Split-Plot Designs," J. Qual. Tech., 38 [2] 162-79 (2006).
L. A. Trinca and S. G. Gilmour, "Multistratum Response Surface Designs," Technometrics, 43 [1] 25-33 (2001).
SAS, SAS Release 9.1.3. SAS Institute, Inc, Cary, NC, (2005).
W. F. Smith, Experimental Design for Formulation. Society for Industrial and Applied Mathematics\American Statistical Association, Philadelphia, PA\Alexanderia, VA, 2005.
G. F. Piepel, "A Component Slope Linear Model for Mixture Experiments," Qual. Tech. Quant. Mgmt., 4 [3] 331-43 (2007).
2001
2004; 36
2006; 38
2002; 34
2002; 44
2007
2006
2005
2007; 4
2002
1996; 5
2003; 45
2001; 43
Piepel G. F. (e_1_2_9_12_2)
Trinca L. A. (e_1_2_9_5_2) 2001; 43
SAS (e_1_2_9_8_2) 2005
Goos P. (e_1_2_9_3_2) 2004; 36
Kowalski S. M. (e_1_2_9_6_2) 2002; 44
Montgomery D. C. (e_1_2_9_4_2) 2001
Ihaka R. (e_1_2_9_10_2) 1996; 5
R Development Core Team (e_1_2_9_11_2) 2006
JMP (e_1_2_9_9_2) 2007
Piepel G. F. (e_1_2_9_17_2) 2007; 4
e_1_2_9_14_2
Gan H. (e_1_2_9_13_2) 2001
Piepel G. F. (e_1_2_9_16_2) 2002; 34
e_1_2_9_15_2
Goos P. (e_1_2_9_7_2) 2006; 38
Bingham D. R. (e_1_2_9_2_2) 2003; 45
References_xml – reference: S. M. Kowalski, J. A. Cornell, and G. G. Vining, "Split-Plot Designs and Estimation Methods for Mixture Experiments With Process Variables," Technometrics, 44 [1] 72-9 (2002).
– reference: SAS, SAS Release 9.1.3. SAS Institute, Inc, Cary, NC, (2005).
– reference: P. Goos, I. Langhans, and M. Vandebroek, "Practical Inference from Industrial Split-Plot Designs," J. Qual. Tech., 38 [2] 162-79 (2006).
– reference: H. Gan and I. L. Pegg, Development of Property-Composition Models for RPP-WTP HLW Glasses, VSL-01R3600-1, Rev. 0, Vitreous State Laboratory. The Catholic University of America, Washington, DC, 2001.
– reference: JMP, JMP Release 7. SAS Institute, Inc, Cary, NC, 2007.
– reference: G. F. Piepel, J. M. Szychowski, and J. L. Loeppky, "Augmenting Scheffé Linear Mixture Models with Squared and/or Crossproduct Terms," J. Qual. Tech., 34 [3] 297-314 (2002).
– reference: J. A. Cornell, Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data, 3rd edition, John Wiley, New York, 2002.
– reference: G. F. Piepel, "A Component Slope Linear Model for Mixture Experiments," Qual. Tech. Quant. Mgmt., 4 [3] 331-43 (2007).
– reference: W. F. Smith, Experimental Design for Formulation. Society for Industrial and Applied Mathematics\American Statistical Association, Philadelphia, PA\Alexanderia, VA, 2005.
– reference: D. R. Bingham and R. R. Sitter, "Fractional Factorial Split-Plot Designs for Robust Parameter Experiments," Technometrics, 45 [1] 80-9 (2003).
– reference: R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2006 URL http://www.R-project.org.
– reference: P. Goos and M. Vanderbroek, "Outperforming Completely Randomized Designs," J. Qual. Tech., 36 [1] 12-26 (2004).
– reference: L. A. Trinca and S. G. Gilmour, "Multistratum Response Surface Designs," Technometrics, 43 [1] 25-33 (2001).
– reference: G. F. Piepel, S. K. Cooley, A. Heredia-Langner, S. M. Landmesser, W. K. Kot, H. Gan, and I. L. Pegg, IHLW PCT, Spinel T1%, Electrical Conductivity, and Viscosity Model Development, VSL-07R1240-4, Rev. 0, Vitreous State Laboratory. The Catholic University of America, Washington, DC.
– reference: D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression Analysis, 3rd edition, John Wiley and Sons, New York, 2001.
– reference: R. Ihaka and R. Gentleman, "R: A Language for Data Analysis and Graphics," J. Comp. Graph. Stat., 5 [3] 299-314 (1996).
– volume: 38
  start-page: 162
  issue: [2]
  year: 2006
  end-page: 79
  article-title: Practical Inference from Industrial Split‐Plot Designs
  publication-title: J. Qual. Tech.
– volume: 5
  start-page: 299
  issue: [3]
  year: 1996
  end-page: 314
  article-title: R
  publication-title: A Language for Data Analysis and Graphics
– year: 2005
– year: 2002
– volume: 45
  start-page: 80
  issue: [1]
  year: 2003
  end-page: 9
  article-title: Fractional Factorial Split‐Plot Designs for Robust Parameter Experiments
  publication-title: Technometrics
– year: 2001
– year: 2007
– year: 2006
– volume: 43
  start-page: 25
  issue: [1]
  year: 2001
  end-page: 33
  article-title: Multistratum Response Surface Designs
  publication-title: Technometrics
– volume: 4
  start-page: 331
  issue: [3]
  year: 2007
  end-page: 43
  article-title: A Component Slope Linear Model for Mixture Experiments
  publication-title: Qual. Tech. Quant. Mgmt.
– volume: 44
  start-page: 72
  issue: [1]
  year: 2002
  end-page: 9
  article-title: Split‐Plot Designs and Estimation Methods for Mixture Experiments With Process Variables
  publication-title: Technometrics
– volume: 34
  start-page: 297
  issue: [3]
  year: 2002
  end-page: 314
  article-title: Augmenting Scheffé Linear Mixture Models with Squared and/or Crossproduct Terms
  publication-title: J. Qual. Tech.
– volume: 36
  start-page: 12
  issue: [1]
  year: 2004
  end-page: 26
  article-title: Outperforming Completely Randomized Designs
  publication-title: J. Qual. Tech.
– volume: 4
  start-page: 331
  issue: 3
  year: 2007
  ident: e_1_2_9_17_2
  article-title: A Component Slope Linear Model for Mixture Experiments
  publication-title: Qual. Tech. Quant. Mgmt.
  doi: 10.1080/16843703.2007.11673155
– volume: 34
  start-page: 297
  issue: 3
  year: 2002
  ident: e_1_2_9_16_2
  article-title: Augmenting Scheffé Linear Mixture Models with Squared and/or Crossproduct Terms
  publication-title: J. Qual. Tech.
  doi: 10.1080/00224065.2002.11980160
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2006
  ident: e_1_2_9_11_2
– ident: e_1_2_9_14_2
  doi: 10.1002/9781118204221
– ident: e_1_2_9_15_2
  doi: 10.1137/1.9780898718393
– volume-title: SAS Release 9.1.3
  year: 2005
  ident: e_1_2_9_8_2
– volume-title: IHLW PCT, Spinel T1%, Electrical Conductivity, and Viscosity Model Development, VSL‐07R1240‐4, Rev. 0, Vitreous State Laboratory
  ident: e_1_2_9_12_2
– volume: 44
  start-page: 72
  issue: 1
  year: 2002
  ident: e_1_2_9_6_2
  article-title: Split‐Plot Designs and Estimation Methods for Mixture Experiments With Process Variables
  publication-title: Technometrics
  doi: 10.1198/004017002753398344
– volume-title: Development of Property‐Composition Models for RPP‐WTP HLW Glasses, VSL‐01R3600‐1, Rev. 0, Vitreous State Laboratory
  year: 2001
  ident: e_1_2_9_13_2
– volume: 38
  start-page: 162
  issue: 2
  year: 2006
  ident: e_1_2_9_7_2
  article-title: Practical Inference from Industrial Split‐Plot Designs
  publication-title: J. Qual. Tech.
  doi: 10.1080/00224065.2006.11918603
– volume: 36
  start-page: 12
  issue: 1
  year: 2004
  ident: e_1_2_9_3_2
  article-title: Outperforming Completely Randomized Designs
  publication-title: J. Qual. Tech.
  doi: 10.1080/00224065.2004.11980249
– volume: 43
  start-page: 25
  issue: 1
  year: 2001
  ident: e_1_2_9_5_2
  article-title: Multistratum Response Surface Designs
  publication-title: Technometrics
  doi: 10.1198/00401700152404291
– volume: 5
  start-page: 299
  issue: 3
  year: 1996
  ident: e_1_2_9_10_2
  article-title: R
  publication-title: A Language for Data Analysis and Graphics
– volume-title: JMP Release 7
  year: 2007
  ident: e_1_2_9_9_2
– volume: 45
  start-page: 80
  issue: 1
  year: 2003
  ident: e_1_2_9_2_2
  article-title: Fractional Factorial Split‐Plot Designs for Robust Parameter Experiments
  publication-title: Technometrics
  doi: 10.1198/004017002188618725
– volume-title: Introduction to Linear Regression Analysis
  year: 2001
  ident: e_1_2_9_4_2
SSID ssj0001984
Score 1.9371586
Snippet Properties such as viscosity and electrical conductivity of glass melts are functions of melt temperature as well as glass composition. When measuring such a...
The methodology for developing property-composition-temperature models and corresponding prediction uncertainty equations using the generalised least squares...
SourceID osti
proquest
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3222
SubjectTerms Applied sciences
Building materials. Ceramics. Glasses
Chemical industry and chemicals
Conductivity
ELECTRIC CONDUCTIVITY
Exact sciences and technology
FORECASTING
GLASS
Glasses
Least squares method
MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES
Manufacture
Mathematical analysis
Mathematical models
Melting
Melts
Physical properties
RADIOACTIVE WASTES
Randomization
Regression
SIMULATION
Temperature effects
VISCOSITY
WASTES
Title Property-Composition-Temperature Modeling of Waste Glass Melt Data Subject to a Randomization Restriction
URI https://api.istex.fr/ark:/67375/WNG-5C192GVR-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1551-2916.2008.02590.x
https://www.proquest.com/docview/217944225
https://www.proquest.com/docview/1082201166
https://www.proquest.com/docview/36049688
https://www.osti.gov/biblio/946647
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQcoEDb0RaKEZC3LLKw3acY1narSq1Qqu-bpbtOFK1bYI2WQl66n_gH_JLmMmLDQKpQtzysC15MjP-7Mx8Q8h7mWdZlCTC5xnTPkuF9LXQ0ncB07GUscliTHA-OhYHp-zwgl908U-YC9PyQwwHbmgZjb9GA9emGhs5rPZ-BPimC4kEJB9MEU9i6Bbio8UvJinYW7MeCSNF3Dio548DjVaq-yh0eDQpwfIwgFJXIMO8LX4xQqebGLdZpPYfk2U_vTY2ZTld12Zqb35jfvw_839CHnVYlu62yveU3HPFM_Jwg-EQ7s4uq3XbpnpOrj_j0f-q_vbj9js6oi5gDO5OHMD3lt6ZYnk2TJKnZU7PNQiEzhHi0yN3VdNPutYUvB0eH9G6pJoudJGV1106KV04LETSJGu8IKf7eyezA7-r9-BbDqjF12nOrDDWwS4qhovUiiB1JkgSK_KI2xz28jIOmXFhpHOWWcaNMJpZY0wmTBC_JJOiLNwrQnmah6nh3IHLYamMtQ1tGkgYJ8sjJkOPJP23VbYjQ8eaHFdqY1ME4lUo3q5UJ4pXffVIOPT80hKC3KHPh0Z9hg56tcSAuoSr8-O54jOA2fOzhfrokS3ULwXoByl8LcY62Vo1NQASj-yMtG4YLQLYlyZB6pHtXg1V54kqFaHHZeC1PfJueAsuBP8L6cKV6wo5YiPEgUJ45O1f2sQiQEOWHpGNUt557upwd7bXXG_9e9dt8iDqeYjD12RSr9buDYDB2uw0Zv4TgldQmg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6h9AAceCPcQrtIiJsjP9br9bGENqE0EYrSx221u15LqGmMEkcCTvwH_iG_hBnbCQkCqULc_NqVPJ6Z_WY98w3AK1nkeZSmwk9yrn2eCelroaXvAq5jKWOTx1TgPByJwRk_uUwu23ZAVAvT8EOsN9zIMmp_TQZOG9LbVo7LvR8hwGlzIhHKB10ElDvU4LuOr8a_uKQwuuYrLEwkcdtpPX-caWut2iGx46VOibZHKZR6gVIsmvYXW_h0E-XWy9TxfZiuXrDJTrnqLivTtV9_4378TxJ4APdaOMsOG_17CLfc7BHc3SA5xLPzj4tl88ziMVx_oN3_efXlx7fv5IvanDE8mzhE8A3DM6MObVQnz8qCXWiUCOsTymdDN63YW11phg6PdpBYVTLNxnqWl9dtRSkbO-pFUtdrPIGz46NJb-C3LR98myBw8XVWcCuMdRhIxXiQWRFkzgRpakURJbbAcF7GITcujHTBc8sTI4zm1hiTCxPET6EzK2fuGbAkK8LMJIlDr8MzGWsb2iyQOE9eRFyGHqSrj6tsy4dObTmmaiMuQvEqEm_brZPEqz57EK5Hfmo4QW4w5nWtP-sBen5FOXVpoi5GfZX0EGn3z8fqjQe7pGAKARCx-FpKd7KVqtsApB7sb6nderYIkV-WBpkHeys9VK0zWqiInC5Hx-3By_Vd9CL0a0jPXLlcEE1sRFBQCA8O_vJMLAKyZemBrLXyxu-uTg57R_Xx7r8PPYDbg8nwVJ2-G73fgzvRipY4fA6dar50LxAbVma_tvmfdQ1UtQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hTkLwwDciG2xGQrylyofjOI-jXTsGq6ZqX2-W7TgS6tZMbSoBT_wP_If8JdwlaWkRSBPizU5iS7ncnX927n4H8EYWeR6lqfCTnGufZ0L6Wmjpu4DrWMrY5DElOB-PxOEZP7pMLtv4J8qFafghVgduZBm1vyYDv8mLTSPH1d6PEN-0IZGI5IMu4sktLgJJGt4f_6KSws01X0Jh4ojbjOr540wbS9UWSR0vdUo0PYqg1HMUYtFUv9iAp-sgt16lBg9hsny_Jjhl0l1Upmu__kb9-H8E8AgetGCW7Tfa9xjuuOkTuL9GcYi980_zRfPM_Clcn9DZ_6z68uPbd_JEbcQY9k4d4veG35lRfTbKkmdlwS40CoQNCeOzY3dVsb6uNEN3R-dHrCqZZmM9zcvrNp-UjR1VIqmzNZ7B2eDgtHfotwUffJsgbPF1VnArjHW4jYqxkVkRZM4EaWpFESW2wM28jENuXBjpgueWJ0YYza0xJhcmiJ9DZ1pO3QtgSVaEmUkShz6HZzLWNrRZIHGevIi4DD1Il99W2ZYNnYpyXKm1XRGKV5F421qdJF712YNwNfKmYQS5xZi3tfqsBujZhCLq0kRdjIYq6SHOHp6P1TsPtkm_FMIf4vC1FOxkK1UXAUg92N3QutVsEeK-LA0yD3aWaqhaVzRXEblcjm7bg9eru-hD6MeQnrpyMSeS2IiAoBAe7P3lmVgEZMnSA1kr5a3fXR3t9w7q9va_D92Duyf9gfr4fvRhB-5FS07i8CV0qtnCvUJgWJnd2uJ_AkZKU20
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Property-Composition-Temperature+Modeling+of+Waste+Glass+Melt+Data+Subject+to+a+Randomization+Restriction&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Piepel%2C+Greg+F&rft.au=Heredia-Langner%2C+Alejandro&rft.au=Cooley%2C+Scott+K&rft.date=2008-10-01&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=91&rft.issue=10&rft.spage=3222&rft.epage=3228&rft_id=info:doi/10.1111%2Fj.1551-2916.2008.02590.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon