Maximum Likelihood Estimation of a Stochastic Integrate-and-Fire Neural Encoding Model
We examine a cascade encoding model for neural response in which a linear filtering stage is followed by a noisy, leaky, integrate-and-fire spike generation mechanism. This model provides a biophysically more realistic alternative to models based on Poisson (memoryless) spike generation, and can eff...
Saved in:
Published in | Neural computation Vol. 16; no. 12; pp. 2533 - 2561 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
One Rogers Street, Cambridge, MA 02142-1209, USA
MIT Press
01.12.2004
MIT Press Journals, The |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We examine a cascade encoding model for neural response in which a linear filtering stage is followed by a noisy, leaky, integrate-and-fire spike generation mechanism. This model provides a biophysically more realistic alternative to models based on Poisson (memoryless) spike generation, and can effectively reproduce a variety of spiking behaviors seen in vivo. We describe the maximum likelihood estimator for the model parameters, given only extracellular spike train responses (not intracellular voltage data). Specifically, we prove that the log-likelihood function is concave and thus has an essentially unique global maximum that can be found using gradient ascent techniques. We develop an efficient algorithm for computing the maximum likelihood solution, demonstrate the effectiveness of the resulting estimator with numerical simulations, and discuss a method of testing the model's validity using time-rescaling and density evolution techniques. |
---|---|
Bibliography: | December, 2004 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0899-7667 1530-888X |
DOI: | 10.1162/0899766042321797 |