Water and Nitrogen Coupling Increased the Water-Nitrogen Use Efficiency of Oilseed Flax

Increasing water shortages and environmental pollution from excess chemical nitrogen fertilizer use necessitate the development of irrigation-nitrogen conservation technology in oilseed flax production. Therefore, a two-year split-plot design experiment (2017–2018) was conducted with three types of...

Full description

Saved in:
Bibliographic Details
Published inPlants (Basel) Vol. 12; no. 1; p. 51
Main Authors Cui, Zhengjun, Effah, Zechariah, Yan, Bin, Gao, Yuhong, Wu, Bing, Wang, Yifan, Xu, Peng, Wang, Haidi, Zhao, Bangqing, Wang, Yingze
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 22.12.2022
MDPI
Subjects
Online AccessGet full text
ISSN2223-7747
2223-7747
DOI10.3390/plants12010051

Cover

More Information
Summary:Increasing water shortages and environmental pollution from excess chemical nitrogen fertilizer use necessitate the development of irrigation-nitrogen conservation technology in oilseed flax production. Therefore, a two-year split-plot design experiment (2017–2018) was conducted with three types of irrigation (I) levels (no irrigation (I0), irrigation of 1200 m3 ha−1 (I1200), and 1800 m3 ha−1 (I1800)) as the main plot and three nitrogen (N) application rates (0 (N0), 60 (N60) and 120 (N120) kg N ha−1) as the subplot in Northwest China to determine the effects of irrigation and N rates on oilseed flax grain yield, yield components, water-use efficiency (WUE), and N partial factor productivity (NPFP). The results show that I1800 optimized the farmland water storage and water storage efficiency (WSE), which gave rise to greater above-ground biomass. Under I1800, the effective capsule (EC) number increased significantly with increasing irrigation amounts, which increased significantly with increasing nitrogen application rate (0–120 kg ha−1). Both irrigation and nitrogen indirectly affect GY by affecting EC; the highest grain yield was observed at the I1800N60 treatment, which increased by 69.04% and 22.80% in 2017 and 2018 compared with the I0N0 treatment, respectively. As a result, both irrigation and N affect grain yield by affecting soil water status, improving above-ground biomass, and finally affecting yield components. In addition, I1800N60 also obtained a higher WUE and the highest NPFP due to a higher grain yield and a lower N application rate. Hence, our study recommends that irrigation with 1800 m3 ha−1 coupled with 60 kg N ha−1 could be a promising strategy for synergistically improving oilseed flax WUE, grain yield and yield components within this semi-arid region.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2223-7747
2223-7747
DOI:10.3390/plants12010051