Mechanisms for low-frequency variability of summer Arctic sea ice extent

Satellite observations reveal a substantial decline in September Arctic sea ice extent since 1979, which has played a leading role in the observed recent Arctic surface warming and has often been attributed, in large part, to the increase in greenhouse gases. However, the most rapid decline occurred...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 15; pp. 4570 - 4575
Main Author Zhang, Rong
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 14.04.2015
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Satellite observations reveal a substantial decline in September Arctic sea ice extent since 1979, which has played a leading role in the observed recent Arctic surface warming and has often been attributed, in large part, to the increase in greenhouse gases. However, the most rapid decline occurred during the recent global warming hiatus period. Previous studies are often focused on a single mechanism for changes and variations of summer Arctic sea ice extent, and many are based on short observational records. The key players for summer Arctic sea ice extent variability at multidecadal/centennial time scales and their contributions to the observed summer Arctic sea ice decline are not well understood. Here a multiple regression model is developed for the first time, to the author’s knowledge, to provide a framework to quantify the contributions of three key predictors (Atlantic/Pacific heat transport into the Arctic, and Arctic Dipole) to the internal low-frequency variability of Summer Arctic sea ice extent, using a 3,600-y-long control climate model simulation. The results suggest that changes in these key predictors could have contributed substantially to the observed summer Arctic sea ice decline. If the ocean heat transport into the Arctic were to weaken in the near future due to internal variability, there might be a hiatus in the decline of September Arctic sea ice. The modeling results also suggest that at multidecadal/centennial time scales, variations in the atmosphere heat transport across the Arctic Circle are forced by anticorrelated variations in the Atlantic heat transport into the Arctic. Significance The observed decline in summer Arctic sea ice has often been attributed, in large part, to the increase in greenhouse gases. However, the contributions from internal low-frequency variability in the climate system are not well understood. Here a multiple regression model is developed for the first time, to the author’s knowledge, to quantify the contributions of three key predictors on the internal low-frequency variability of summer Arctic sea ice extent. If the ocean heat transport into the Arctic were to weaken in the near future due to internal variability, there might be a hiatus in the decline of September Arctic sea ice, and a delay in attaining a summer ice-free Arctic. This plausible scenario with broad ecological and economic impacts should not be ignored.
Bibliography:http://dx.doi.org/10.1073/pnas.1422296112
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: R.Z. designed research, performed research, analyzed data, and wrote the paper.
Edited by John M. Wallace, University of Washington, Seattle, WA, and approved March 4, 2015 (received for review November 21, 2014)
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.1422296112