沙障风荷载作用下嵌固端受力分析

该文应用大涡模拟方法研究不同孔隙度透过性沙障嵌固端受力变化及其周围流场结构特征。结果表明,非透过沙障在相同速度的促发气流下嵌固端受力远高于孔隙沙障,其嵌固端弯矩和剪力最大值分别为40%孔隙率沙障的2倍和1.5倍,为80%孔隙率沙障的16.5倍和14.45倍,沙障嵌固端最大弯矩和剪力值随孔隙率增大而逐渐减小。在持续风力作用下,沙障嵌固端所受弯矩和剪力大大降低,沙障孔隙率为0时,其最大弯矩和剪力值约为其平均值的9.4倍和6.9倍,而沙障孔隙率为80%时,最大弯矩和剪力值分别约为其平均值的2.3倍与2.5倍。沙障孔隙度在一定范围内变化时,其周围流场结构有一定的相似性,以50%孔隙率为分界点可以分为2...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. 2; pp. 148 - 154
Main Author 孙浩 刘晋浩 黄青青
Format Journal Article
LanguageChinese
Published 北京林业大学工学院,北京,100083 2017
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.02.020

Cover

Abstract 该文应用大涡模拟方法研究不同孔隙度透过性沙障嵌固端受力变化及其周围流场结构特征。结果表明,非透过沙障在相同速度的促发气流下嵌固端受力远高于孔隙沙障,其嵌固端弯矩和剪力最大值分别为40%孔隙率沙障的2倍和1.5倍,为80%孔隙率沙障的16.5倍和14.45倍,沙障嵌固端最大弯矩和剪力值随孔隙率增大而逐渐减小。在持续风力作用下,沙障嵌固端所受弯矩和剪力大大降低,沙障孔隙率为0时,其最大弯矩和剪力值约为其平均值的9.4倍和6.9倍,而沙障孔隙率为80%时,最大弯矩和剪力值分别约为其平均值的2.3倍与2.5倍。沙障孔隙度在一定范围内变化时,其周围流场结构有一定的相似性,以50%孔隙率为分界点可以分为2组,每组沙障嵌固端受力各有其相似的变化特征。研究可为沙障设计插入深度提供理论支撑。
AbstractList S157.1%U216.41+3; 该文应用大涡模拟方法研究不同孔隙度透过性沙障嵌固端受力变化及其周围流场结构特征。结果表明,非透过沙障在相同速度的促发气流下嵌固端受力远高于孔隙沙障,其嵌固端弯矩和剪力最大值分别为40%孔隙率沙障的2倍和1.5倍,为80%孔隙率沙障的16.5倍和14.45倍,沙障嵌固端最大弯矩和剪力值随孔隙率增大而逐渐减小。在持续风力作用下,沙障嵌固端所受弯矩和剪力大大降低,沙障孔隙率为0时,其最大弯矩和剪力值约为其平均值的9.4倍和6.9倍,而沙障孔隙率为80%时,最大弯矩和剪力值分别约为其平均值的2.3倍与2.5倍。沙障孔隙度在一定范围内变化时,其周围流场结构有一定的相似性,以50%孔隙率为分界点可以分为2组,每组沙障嵌固端受力各有其相似的变化特征。研究可为沙障设计插入深度提供理论支撑。
该文应用大涡模拟方法研究不同孔隙度透过性沙障嵌固端受力变化及其周围流场结构特征。结果表明,非透过沙障在相同速度的促发气流下嵌固端受力远高于孔隙沙障,其嵌固端弯矩和剪力最大值分别为40%孔隙率沙障的2倍和1.5倍,为80%孔隙率沙障的16.5倍和14.45倍,沙障嵌固端最大弯矩和剪力值随孔隙率增大而逐渐减小。在持续风力作用下,沙障嵌固端所受弯矩和剪力大大降低,沙障孔隙率为0时,其最大弯矩和剪力值约为其平均值的9.4倍和6.9倍,而沙障孔隙率为80%时,最大弯矩和剪力值分别约为其平均值的2.3倍与2.5倍。沙障孔隙度在一定范围内变化时,其周围流场结构有一定的相似性,以50%孔隙率为分界点可以分为2组,每组沙障嵌固端受力各有其相似的变化特征。研究可为沙障设计插入深度提供理论支撑。
Abstract_FL Inserted depth is an important parameter in sand fence engineering. In order to provide a theoretical support for inserted depth of sand fence, the sand fence with different porosity was studied by using LES method. Five kinds of sand fence were selected as the research objects with the porosity of 0, 20%, 40%, 60% and 80%. The height of sand fence was 50 mm. Boundary condition was of great importance to the simulation of the flow structure around the sand fence, the large eddy model (LES) was employed as the turbulence model. The gas phase had been simplified with the influence of sand particles ignored. It was treated as incompressible gas, and its flow was assumed to be in transition state. The velocity at inlet of calculation domain followed the logarithm distribution and the friction velocity was 0.5 m/s. The SIMPLIC method was employed for flow field prediction. Ten layers were arranged near wall and the height of the first layer was 0.01 mm, and yplus was less than 1. The top boundary of calculation domain was slip wall boundary, and the bottom was nonslip wall boundary. The turbulence numerical results for sand fence with the porosity 0 were compared with the experimental results of a similar study that was conducted in a blowing sand wind tunnel at the Key Laboratory of Desert and Desertification of Chinese Academy of Sciences. The particle image velocimetry (PIV) was employed to determine mean velocity and the turbulence fields were calculated by the velocity. The numerical model was well verified. Then, the variation of bending moment and shear force with porosity and the flow structure around the fence were analyzed. The results showed that the bending moment and shear force on the embedded end of sand fence without pores was much higher than that for the sand fence with pores under the sudden air flow with same velocity, and its maximum bending moment and shear force on the embedded end were 2 and 1.5 times of that with 40% porosity, and were 16.5 and 14.45 times of that with 80% porosity. The maximum bending moment and shear force on the embedded end decreased with increasing porosity. The bending moment and shear force decreased greatly under continuous wind forces. When the porosity of sand fence was 0, its maximum bending moment and shear force on the embedded end was about 9.4 and 6.9 times of the mean under the continuous wind forces. When the porosity of sand fence was 80%, its maximum bending moment and shear force on the embedded end was about 2.3 and 2.5 times of the mean under the continuous wind forces. The size of the main vortex behind the sand fence decreased with the increase of the porosity. Large eddy had a stronger resistance to its movement change, causing the lager bending moment and shear force at the embedded end of sand fence with 0 porosity compared to the sand fence which has porosity. When the porosity was less than 50%, there was no obvious main vortex structure in the rear of the sand fence and its flow structure was similar to that for the single plate. The flow structure around the sand barrier with closed porosity had similar appearance, and it could be divided into 2 groups by the porosity of 50%, and the stress in each of the group had the similar varying characteristics.
Author 孙浩 刘晋浩 黄青青
AuthorAffiliation 北京林业大学工学院,北京100083
AuthorAffiliation_xml – name: 北京林业大学工学院,北京,100083
Author_FL Huang Qingqing
Liu Jinhao
Sun Hao
Author_FL_xml – sequence: 1
  fullname: Sun Hao
– sequence: 2
  fullname: Liu Jinhao
– sequence: 3
  fullname: Huang Qingqing
Author_xml – sequence: 1
  fullname: 孙浩 刘晋浩 黄青青
BookMark eNo9j8tKw0AYhWdRwVr7EoK4Svz_mUwms5TiDQpuui8zk6Sm6FQbRPsCIt4XgmiLGzeCC0EQRcjbNL28hZGKcODA4eMczgIp2Y6NCFlGcBGl4KttN0lT6yIAdfwApUsBhQu0EJRI-T-fJ9U0TTRwZALAwzJxRu8P08fB9Pl6cvU5ybJhNhjfvQy_LvKPy7z_PX59y2_u8_N-fnY6erpdJHOx2kuj6p9XSGNjvVHbcuo7m9u1tbpjuAQnpJwJHqMBbUL0Ay619ELwYq2Mrz0ZKJRUxqFiRjOUHoIvIs6V1BBoETFWISuz2mNlY2VbzXbnqGuLwabttcyJ_n1XPKNQkEsz0ux2bOswKdiDbrKvur2mL5ByKUGwHynIY_Q
ClassificationCodes S157.1%U216.41+3
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2017.02.020
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Numerical analysis for force at embedded end of sand barrier under wind loads
DocumentTitle_FL Numerical analysis for force at embedded end of sand barrier under wind loads
EndPage 154
ExternalDocumentID nygcxb201702020
671259907
GrantInformation_xml – fundername: 国家科技支撑计划项目-林业生态科技工程
  funderid: (2015BAD07B00)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c590-d25375f1c0bcd16859b94d04fbac6b498a1929fda3cb31941067e55a9b08b7e33
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:04:12 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords numerical methods
large eddy simulation
固沙
porosity
大涡模拟
flow structure
porous fences
孔隙度
流场结构
sand fixation
透过性沙障
数值方法
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c590-d25375f1c0bcd16859b94d04fbac6b498a1929fda3cb31941067e55a9b08b7e33
Notes Inserted depth is an important parameter in sand fence engineering. In order to provide a theoretical support for inserted depth of sand fence, the sand fence with different porosity was studied by using LES method. Five kinds of sand fence were selected as the research objects with the porosity of 0, 20%, 40%, 60% and 80%. The height of sand fence was 50 mm. Boundary condition was of great importance to the simulation of the flow structure around the sand fence, the large eddy model(LES) was employed as the turbulence model. The gas phase had been simplified with the influence of sand particles ignored. It was treated as incompressible gas, and its flow was assumed to be in transition state. The velocity at inlet of calculation domain followed the logarithm distribution and the friction velocity was 0.5 m/s. The SIMPLIC method was employed for flow field prediction. Ten layers were arranged near wall and the height of the first layer was 0.01 mm, and yplus was less than 1. The top boundary of calculation dom
PageCount 7
ParticipantIDs wanfang_journals_nygcxb201702020
chongqing_primary_671259907
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2017
Publisher 北京林业大学工学院,北京,100083
Publisher_xml – name: 北京林业大学工学院,北京,100083
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1507761
Snippet ...
S157.1%U216.41+3;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 148
SubjectTerms 固沙
大涡模拟
孔隙度
数值方法
流场结构
透过性沙障
Title 沙障风荷载作用下嵌固端受力分析
URI http://lib.cqvip.com/qk/90712X/201702/671259907.html
https://d.wanfangdata.com.cn/periodical/nygcxb201702020
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsEk2IHoQnxijEsE-TpxH93T3sWd2liDoaYXclnluThuNG9B8gIjvgyCa4MWL4EEQRBH2b7J5_IVVPbOzowm-YGmK7tp6dM10Vfd0VxNyDVwuWNW2rTQpbIupmFnSQSjjmZB2waVZ0715y1--zW6s8JWZ2auNXUsbw2Qp3TzyXMn_WBXqwK54SvYfLFsThQqAwb5QgoWh_Csb08ingUuVopGiSlMVIqA9KiMaSSrbNBAIBG38RQxLxBFUMaqlqQG0gEacBpzKEAEV0EAjjg6o7mCN7FAlDKCxFQH4l4_cVUTLezgnAa5p9Q0XQxykQuJAjRuaE3a6TbWhADQ1n5i9akGFfJRIq2YLcFXScFWGyiEURYOASmZ6A6i4NdBc2ygPcZrn0BANjXIMldbhRCfxk_gaeks0pK4VqmsUyqRdeGCPoOmGjglCGw4APYQvq2G88hCe13gT3MZw75RZQqvIwSnTYR92Skpw45WQw1LNAfcVCpMw1rWn3rjeIzl40E_vJ4gD7a49S-ZcIRzeInM6aAedaczr4LS-HpRdTG3gT-eQ3PHwBoN63xN-9edmC0AlxjFCJ0Je_52ImHxkdW3QvwshlTnhNijiQb8RjHVPkZPVLGpRl6_EaTKzuXqGnND99SqTTH6WWLuf3xy83T54_3z_2df90WhntL336sPOtyfjL0_HW9_3Pn4av3g9frw1fvRw993Lc6TbibrhslXdDWKlXNlW5nJP8MJJ7STNHF9ylSiW2axI4tRPmJIxqKmKLPbSBJwMw0SJOeexSmyZiNzzzpPWYG2QXyCLrigyh4siz1PJcpdJ6KFEZA7LvczOCmeeLNR69-6UKWB6voCJAQRyYp4sVj3RqwaGe71fLHfxzygL5DjC5dLeJdIarm_klyHYHSZXKnP_AHbkfgY
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B2%99%E9%9A%9C%E9%A3%8E%E8%8D%B7%E8%BD%BD%E4%BD%9C%E7%94%A8%E4%B8%8B%E5%B5%8C%E5%9B%BA%E7%AB%AF%E5%8F%97%E5%8A%9B%E5%88%86%E6%9E%90&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%AD%99%E6%B5%A9&rft.au=%E5%88%98%E6%99%8B%E6%B5%A9&rft.au=%E9%BB%84%E9%9D%92%E9%9D%92&rft.date=2017&rft.pub=%E5%8C%97%E4%BA%AC%E6%9E%97%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%B7%A5%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC%2C100083&rft.issn=1002-6819&rft.volume=33&rft.issue=2&rft.spage=148&rft.epage=154&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.02.020&rft.externalDocID=nygcxb201702020
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg