沙障风荷载作用下嵌固端受力分析

该文应用大涡模拟方法研究不同孔隙度透过性沙障嵌固端受力变化及其周围流场结构特征。结果表明,非透过沙障在相同速度的促发气流下嵌固端受力远高于孔隙沙障,其嵌固端弯矩和剪力最大值分别为40%孔隙率沙障的2倍和1.5倍,为80%孔隙率沙障的16.5倍和14.45倍,沙障嵌固端最大弯矩和剪力值随孔隙率增大而逐渐减小。在持续风力作用下,沙障嵌固端所受弯矩和剪力大大降低,沙障孔隙率为0时,其最大弯矩和剪力值约为其平均值的9.4倍和6.9倍,而沙障孔隙率为80%时,最大弯矩和剪力值分别约为其平均值的2.3倍与2.5倍。沙障孔隙度在一定范围内变化时,其周围流场结构有一定的相似性,以50%孔隙率为分界点可以分为2...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. 2; pp. 148 - 154
Main Author 孙浩 刘晋浩 黄青青
Format Journal Article
LanguageChinese
Published 北京林业大学工学院,北京,100083 2017
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.02.020

Cover

More Information
Summary:该文应用大涡模拟方法研究不同孔隙度透过性沙障嵌固端受力变化及其周围流场结构特征。结果表明,非透过沙障在相同速度的促发气流下嵌固端受力远高于孔隙沙障,其嵌固端弯矩和剪力最大值分别为40%孔隙率沙障的2倍和1.5倍,为80%孔隙率沙障的16.5倍和14.45倍,沙障嵌固端最大弯矩和剪力值随孔隙率增大而逐渐减小。在持续风力作用下,沙障嵌固端所受弯矩和剪力大大降低,沙障孔隙率为0时,其最大弯矩和剪力值约为其平均值的9.4倍和6.9倍,而沙障孔隙率为80%时,最大弯矩和剪力值分别约为其平均值的2.3倍与2.5倍。沙障孔隙度在一定范围内变化时,其周围流场结构有一定的相似性,以50%孔隙率为分界点可以分为2组,每组沙障嵌固端受力各有其相似的变化特征。研究可为沙障设计插入深度提供理论支撑。
Bibliography:Inserted depth is an important parameter in sand fence engineering. In order to provide a theoretical support for inserted depth of sand fence, the sand fence with different porosity was studied by using LES method. Five kinds of sand fence were selected as the research objects with the porosity of 0, 20%, 40%, 60% and 80%. The height of sand fence was 50 mm. Boundary condition was of great importance to the simulation of the flow structure around the sand fence, the large eddy model(LES) was employed as the turbulence model. The gas phase had been simplified with the influence of sand particles ignored. It was treated as incompressible gas, and its flow was assumed to be in transition state. The velocity at inlet of calculation domain followed the logarithm distribution and the friction velocity was 0.5 m/s. The SIMPLIC method was employed for flow field prediction. Ten layers were arranged near wall and the height of the first layer was 0.01 mm, and yplus was less than 1. The top boundary of calculation dom
ISSN:1002-6819
DOI:10.11975/j.issn.1002-6819.2017.02.020