Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning

Ceramic aerogels are attractive for many applications due to their ultralow density, high porosity, and multifunctionality but are limited by the typical trade-off relationship between mechanical properties and thermal stability when used in extreme environments. In this work, we design and synthesi...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; p. 2637
Main Authors Cheng, Xiaota, Liu, Yi-Tao, Si, Yang, Yu, Jianyong, Ding, Bin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.05.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ceramic aerogels are attractive for many applications due to their ultralow density, high porosity, and multifunctionality but are limited by the typical trade-off relationship between mechanical properties and thermal stability when used in extreme environments. In this work, we design and synthesize ceramic nanofibrous aerogels with three-dimensional (3D) interwoven crimped-nanofibre structures that endow the aerogels with superior mechanical performances and high thermal stability. These ceramic aerogels are synthesized by a direct and facile route, 3D reaction electrospinning. They display robust structural stability with structure-derived mechanical ultra-stretchability up to 100% tensile strain and superior restoring capacity up to 40% tensile strain, 95% bending strain and 60% compressive strain, high thermal stability from −196 to 1400 °C, repeatable stretchability at working temperatures up to 1300 °C, and a low thermal conductivity of 0.0228 W m −1 K −1 in air. This work would enable the innovative design of high-performance ceramic aerogels for various applications. Ceramic aerogels are generally brittle and often tend to structurally collapse under large external tensile strain. Here the authors synthesize large-scale stretchable ceramic aerogels with interwoven crimped nanofibers by combining electrohydrodynamic method and 3D reaction electrospinning.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-30435-z