Effects of Lycium Barbarum Polysaccharides on the Metabolism of Dendritic Cells: An In Vitro Study

Targeting dendritic cells (DCs) metabolism-related pathways and in-situ activation of DCs have become a new trend in DC-based immunotherapy. Studies have shown that Lycium barbarum polysaccharide can promote DCs function. This study is aimed at exploring the mechanism of LBP affecting DCs function f...

Full description

Saved in:
Bibliographic Details
Published inJournal of Immunology Research Vol. 2022; pp. 1 - 11
Main Authors Zhang, Baochen, Chen, Kengyu, Liu, Li, Li, Xiuyun, Wu, Enhui, Han, Liang, Shi, Zhongfeng, Deng, Xiangliang
Format Journal Article
LanguageEnglish
Published New York Hindawi 19.10.2022
John Wiley & Sons, Inc
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Targeting dendritic cells (DCs) metabolism-related pathways and in-situ activation of DCs have become a new trend in DC-based immunotherapy. Studies have shown that Lycium barbarum polysaccharide can promote DCs function. This study is aimed at exploring the mechanism of LBP affecting DCs function from the perspective of metabolomics. MTT method was used to detect the activity of DC2.4 cells. ELISA kit method was used to detect the contents of IL-6, IL-12, and TNF-α in the supernatant of cells. Ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was used to detect general changes in DC2.4 cell metabolism. And then multidistance covariates and bioinformatics, partial least squares-discriminant analysis (PLS-DA) were used to analyze differential metabolites. Finally, metabolic pathway analysis was performed by MetaboAnalyst v5.0. The results showed that LBP had no significant inhibitory effect on the activity of DC2.4 cells at the experimental dose of 50-200 μg/ml. LBP (100 μg/ml) could significantly stimulate DC2.4 cells to secrete IL-6, TNF-α, and IL-12. Moreover, 20 differential metabolites could be identified, including betaine, hypoxanthine, L-carnitine, 5’-methylthioadenosine, orotic acid, sphingomyelin, and L-glutamine. These metabolites were involved 28 metabolic pathways and the top 5 metabolic pathways were aspartate metabolism, pyrimidine metabolism, phenylacetate metabolism, methionine metabolism, and fatty acid metabolism. These results suggest that the effect of LBP on DCs function is related to the regulation of cell metabolism.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Academic Editor: Lihua Duan
ISSN:2314-8861
2314-7156
DOI:10.1155/2022/5882136