Mapping Excited-State Dynamics by Coherent Control of a Dendrimer's Photoemission Efficiency

Adaptive laser pulse shaping has enabled impressive control over photophysical processes in complex molecules. However, the optimal pulse shape that emerges rarely offers straightforward insight into the excited-state properties being manipulated. We have shown that the emission quantum yield of a d...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 326; no. 5950; pp. 263 - 267
Main Authors Kuroda, Daniel G, Singh, C.P, Peng, Zhonghua, Kleiman, Valeria D
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 09.10.2009
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Adaptive laser pulse shaping has enabled impressive control over photophysical processes in complex molecules. However, the optimal pulse shape that emerges rarely offers straightforward insight into the excited-state properties being manipulated. We have shown that the emission quantum yield of a donor-acceptor macromolecule (a phenylene ethynylene dendrimer tethered to perylene) can be enhanced by 15% through iterative phase modulation of the excitation pulse. Furthermore, by analyzing the pulse optimization process and optimal pulse features, we successfully isolated the dominant elements underlying the control mechanism. We demonstrated that a step function in the spectral phase directs the postexcitation dynamics of the donor moiety, thus characterizing the coherent nature of the donor excited state. An accompanying pump-probe experiment implicates a 2+1 photon control pathway, in which the optimal pulse promotes a delayed excitation to a second excited state through favorable quantum interference.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1176524