Genetic Improvement of Bacillus licheniformis Strains for Efficient Deproteinization of Shrimp Shells and Production of High-Molecular-Mass Chitin and Chitosan

By targeted deletion of the polyglutamate operon (pga) in Bacillus licheniformis F11, a derivative form, F11.1 (Δpga), was obtained that, along with lacking polyglutamate (PGA) formation, displayed enhanced proteolytic activities. The phenotypic properties were maintained in a strain in which the ch...

Full description

Saved in:
Bibliographic Details
Published inApplied and Environmental Microbiology Vol. 76; no. 24; pp. 8211 - 8221
Main Authors Hoffmann, Kerstin, Daum, Gabriele, Köster, Marina, Kulicke, Werner-Michael, Meyer-Rammes, Heike, Bisping, Bernward, Meinhardt, Friedhelm
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.12.2010
American Society for Microbiology (ASM)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:By targeted deletion of the polyglutamate operon (pga) in Bacillus licheniformis F11, a derivative form, F11.1 (Δpga), was obtained that, along with lacking polyglutamate (PGA) formation, displayed enhanced proteolytic activities. The phenotypic properties were maintained in a strain in which the chiBA operon was additionally deleted: F11.4 (ΔchiBA Δpga). These genetically modified strains, carrying the Δpga deletion either alone (F11.1) or together with the ΔchiBA (F11.4) deletion, were used in fermentations (20-liter scale) aiming at the deproteinization of shrimp shells in order to obtain long-chain chitin. After chemical deacetylation, the resulting chitosan samples were analyzed by nuclear magnetic resonance spectroscopy, size exclusion chromatography, and viscometry and compared to a chitosan preparation that was produced in parallel by chemical methods by a commercial chitosan supplier (GSRmbH). Though faint lipid impurities were present in the fermented polysaccharides, the viscosity of the material produced with the double-deletion mutant F11.4 (Δpga ΔchiBA) was higher than that of the chemically produced and commercially available samples (Cognis GmbH). Thus, enhanced proteolytic activities and a lack of chitinase activity render the double mutant F11.4 a powerful tool for the production of long-chain chitosan.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ISSN:0099-2240
1098-5336
1098-5336
1098-6596
DOI:10.1128/AEM.01404-10