Grape Seed Proanthocyanidins (GSPs) Inhibit the Development of Cutaneous Squamous Cell Carcinoma by Regulating the hsa_circ_0070934/miR-136-5p/PRAF2 Axis

Grape seed proanthocyanidins (GSPs) have been shown to inhibit the progression of many cancers, including cutaneous squamous cell carcinoma (CSCC). Circular RNA (circRNA) is a key regulator for cancer progression. However, it is unclear whether GSPs can mediate the progression of CSCC by regulating...

Full description

Saved in:
Bibliographic Details
Published inCancer management and research Vol. 13; pp. 4359 - 4371
Main Authors Xiong, Weibiao, Wu, Lan'e, Tang, Runke, Zhang, Qingqing, Guo, Qian, Song, Shuhua
Format Journal Article
LanguageEnglish
Published New Zealand Dove Medical Press Limited 01.01.2021
Taylor & Francis Ltd
Dove
Dove Medical Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Grape seed proanthocyanidins (GSPs) have been shown to inhibit the progression of many cancers, including cutaneous squamous cell carcinoma (CSCC). Circular RNA (circRNA) is a key regulator for cancer progression. However, it is unclear whether GSPs can mediate the progression of CSCC by regulating circRNA. Quantitative real-time PCR was conducted to determine the expression of hsa_circ_0070934, microRNA (miR)-136-5p and prenylated Rab acceptor family 2 (PRAF2). MTT assay and colony formation assay were used to assess cell proliferation. Cell cycle process and apoptosis were detected by flow cytometry, and cell migration and invasion were measured by transwell assay. Western blot analysis was utilized to examine protein expression. In addition, dual-luciferase reporter assay and RIP assay were used to evaluate the interaction between miR-136-5p and hsa_circ_0070934 or PRAF2. Subcutaneous xenograft models were constructed to explore the function of GSPs on CSCC tumor growth in vivo. GSPs could reduce hsa_circ_0070934 expression and inhibit CSCC cell proliferation, cell cycle process, migration, invasion, while promote apoptosis. Overexpressed hsa_circ_0070934 could reverse the suppressive effect of GSPs on CSCC cell progression. MiR-136-5p could be sponged by hsa_circ_0070934, and its overexpression also abolished the positively regulation of hsa_circ_0070934 on the progression of GSPs-induced CSCC cells. PRAF2 was a target of miR-136-5p, and its expression could be decreased by GSPs and increased by hsa_circ_0070934. The inhibitory effect of miR-136-5p on CSCC cell progression could be reversed by PRAF2 overexpression. Additionally, GSPs also could inhibit CSCC tumor growth in vivo. Our data showed that GSPs regulated the hsa_circ_0070934/miR-136-5p/PRAF2 axis to restrain CSCC progression.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
ISSN:1179-1322
1179-1322
DOI:10.2147/CMAR.S302084