State-dependent differences between functional and effective connectivity of the human cortical motor system

Neural processing is based on interactions between functionally specialized areas that can be described in terms of functional or effective connectivity. Functional connectivity is often assessed by task-free, resting-state functional magnetic resonance imaging (fMRI), whereas effective connectivity...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 67; pp. 237 - 246
Main Authors Rehme, Anne K., Eickhoff, Simon B., Grefkes, Christian
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.02.2013
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2012.11.027

Cover

More Information
Summary:Neural processing is based on interactions between functionally specialized areas that can be described in terms of functional or effective connectivity. Functional connectivity is often assessed by task-free, resting-state functional magnetic resonance imaging (fMRI), whereas effective connectivity is usually estimated from task-based fMRI time-series. To investigate whether different connectivity approaches assess similar network topologies in the same subjects, we scanned 36 right-handed volunteers with resting-state fMRI followed by active-state fMRI involving a hand movement task. Time-series information was extracted from identical locations defined from individual activation maxima derived from the motor task. Dynamic causal modeling (DCM) was applied to the motor task time-series to estimate endogenous and context-dependent effective connectivity. In addition, functional connectivity was computed for both the rest and the motor task condition by means of inter-regional time-series correlations. At the group-level, we found strong interactions between the motor areas of interest in all three connectivity analyses. However, although the sample size warranted 90% power to detect correlations of medium effect size, resting-state functional connectivity was only weakly correlated with both task-based functional and task-based effective connectivity estimates for corresponding region-pairs. By contrast, task-based functional connectivity showed strong positive correlations with DCM effective connectivity parameters. In conclusion, resting-state and task-based connectivity reflect different components of functional integration that particularly depend on the functional state in which the subject is being scanned. Therefore, resting-state fMRI and DCM should be used as complementary measures when assessing functional brain networks. ► Weak correlations between resting-state functional and task-based effective connectivity ► Robust correlation between task-based functional and effective connectivity ► Connectivity depends on the experimental setting, not on the connectivity method. ► Different connectivity methods represent complementary measures of neural networks.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2012.11.027