Molecular Reorganization during the Formation of the Human Skin Barrier Studied In Situ

In vertebrates, skin upholds homeostasis by preventing body water loss. The skin's permeability barrier is located intercellularly in the stratum corneum and consists of stacked lipid lamellae composed of ceramides, cholesterol, and free fatty acids. We have combined cryo-electron microscopy wi...

Full description

Saved in:
Bibliographic Details
Published inJournal of investigative dermatology Vol. 141; no. 5; pp. 1243 - 1253.e6
Main Authors Narangifard, Ali, Wennberg, Christian L., den Hollander, Lianne, Iwai, Ichiro, Han, HongMei, Lundborg, Magnus, Masich, Sergej, Lindahl, Erik, Daneholt, Bertil, Norlén, Lars
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In vertebrates, skin upholds homeostasis by preventing body water loss. The skin's permeability barrier is located intercellularly in the stratum corneum and consists of stacked lipid lamellae composed of ceramides, cholesterol, and free fatty acids. We have combined cryo-electron microscopy with molecular dynamics modeling and electron microscopy simulation in our analysis of the lamellae's formation, a maturation process beginning in stratum granulosum and ending in stratum corneum. Previously, we have revealed the lipid lamellae's initial- and end-stage molecular organizations. In this study, we reveal two cryo-electron microscopy patterns representing intermediate stages in the lamellae's maturation process: a single-band pattern with 2.0‒2.5 nm periodicity and a two-band pattern with 5.5‒6.0 nm periodicity, which may be derived from lamellar lipid structures with 4.0‒5.0 nm and 5.5‒6.0 nm periodicity, respectively. On the basis of the analysis of the data now available on the four maturation stages identified, we can present a tentative molecular model for the complete skin barrier formation process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-202X
1523-1747
1523-1747
DOI:10.1016/j.jid.2020.07.040