Minimization of Glycerol Production during the High-Performance Fed-Batch Ethanolic Fermentation Process in Saccharomyces cerevisiae, Using a Metabolic Model as a Prediction Tool
On the basis of knowledge of the biological role of glycerol in the redox balance of Saccharomyces cerevisiae, a fermentation strategy was defined to reduce the surplus formation of NADH, responsible for glycerol synthesis. A metabolic model was used to predict the operating conditions that would re...
Saved in:
Published in | Applied and Environmental Microbiology Vol. 72; no. 3; pp. 2134 - 2140 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.03.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | On the basis of knowledge of the biological role of glycerol in the redox balance of Saccharomyces cerevisiae, a fermentation strategy was defined to reduce the surplus formation of NADH, responsible for glycerol synthesis. A metabolic model was used to predict the operating conditions that would reduce glycerol production during ethanol fermentation. Experimental validation of the simulation results was done by monitoring the inlet substrate feeding during fed-batch S. cerevisiae cultivation in order to maintain the respiratory quotient (RQ) (defined as the CO₂ production to O₂ consumption ratio) value between 4 and 5. Compared to previous fermentations without glucose monitoring, the final glycerol concentration was successfully decreased. Although RQ-controlled fermentation led to a lower maximum specific ethanol production rate, it was possible to reach a high level of ethanol production: 85 g · liter⁻¹ with 1.7 g · liter⁻¹ glycerol in 30 h. We showed here that by using a metabolic model as a tool in prediction, it was possible to reduce glycerol production in a very high-performance ethanolic fermentation process. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC1393190 Corresponding author. Mailing address: Biotechnology and Bioprocess Laboratory, UMR-CNRS 5504, UMR-INRA 792, Département de Génie Biochimique et Alimentaire, Institut National des Sciences Appliquées, 135 Avenue de Rangueil, 31077 Toulouse Cedex, France. Phone: (33) 5 61 55 94 47. Fax: (33) 5 61 55 94 00. E-mail: guillouet@insa-toulouse.fr. These two authors worked equally on this project. |
ISSN: | 0099-2240 1098-5336 |
DOI: | 10.1128/AEM.72.3.2134-2140.2006 |