Advanced Strategies for Production of Natural Products in Yeast

Natural products account for more than 50% of all small-molecule pharmaceutical agents currently in clinical use. However, low availability often becomes problematic when a bioactive natural product is promising to become a pharmaceutical or leading compound. Advances in synthetic biology and metabo...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 23; no. 3; p. 100879
Main Authors Chen, Ruibing, Yang, Shan, Zhang, Lei, Zhou, Yongjin J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.03.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Natural products account for more than 50% of all small-molecule pharmaceutical agents currently in clinical use. However, low availability often becomes problematic when a bioactive natural product is promising to become a pharmaceutical or leading compound. Advances in synthetic biology and metabolic engineering provide a feasible solution for sustainable supply of these compounds. In this review, we have summarized current progress in engineering yeast cell factories for production of natural products, including terpenoids, alkaloids, and phenylpropanoids. We then discuss advanced strategies in metabolic engineering at three different dimensions, including point, line, and plane (corresponding to the individual enzymes and cofactors, metabolic pathways, and the global cellular network). In particular, we comprehensively discuss how to engineer cofactor biosynthesis for enhancing the biosynthesis efficiency, other than the enzyme activity. Finally, current challenges and perspective are also discussed for future engineering direction. [Display omitted] Biological Sciences; Bioengineering; Metabolic Engineering; Biotechnology; Microbial Biotechnology
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
These authors contributed equally
ISSN:2589-0042
2589-0042
DOI:10.1016/j.isci.2020.100879