Metabolic depression is delayed and mitochondrial impairment averted during prolonged anoxia in the ghost shrimp, Lepidophthalmus louisianensis (Schmitt, 1935)
Lepidophthalmus louisianensis burrows deeply into oxygen-limited estuarine sediments and is subjected to extended anoxia at low tides. Large specimens (> 2 g) have a lethal time for 50% mortality (LT 50) of 64 h under anoxia at 25 °C. Small specimens (< 1 g) have a significantly higher LT 50 o...
Saved in:
Published in | Journal of experimental marine biology and ecology Vol. 376; no. 2; pp. 85 - 93 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
15.08.2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Lepidophthalmus louisianensis burrows deeply into oxygen-limited estuarine sediments and is subjected to extended anoxia at low tides. Large specimens (>
2
g) have a lethal time for 50% mortality (LT
50) of 64
h under anoxia at 25
°C. Small specimens (<
1
g) have a significantly higher LT
50 of 113
h, which is the longest ever reported for a crustacean. Whole body lactate levels rise dramatically under anoxia and exceed 120
μmol
g.f.w.
−
1
by 72
h. ATP, ADP, and AMP do not change during 48
h of anoxia, but arginine phosphate declines by over 50%. Thus arginine phosphate may help stabilize the ATP pool. Surprisingly, when compared to the aerobic resting rate, ATP production under anoxia declines only moderately during the first 12
h, and drops to only about 30% between 12 and 48
h. Finally, after 48
h of anoxia, a major metabolic depression to less than 5% occurs. Downregulation of metabolism is delayed in
L. louisianensis compared to many invertebrates that exhibit facultative anaerobiosis. Bioenergetic constraints as a result of eventual metabolic depression lead to ionic disturbances like calcium overload and compromised membrane potential of mitochondria. Because these phenomena trigger apoptosis in mammalian species, we evaluated the susceptibility of ghost shrimp mitochondria to opening of the mitochondrial permeability transition pore (MPTP) and associated damage. Energized mitochondria isolated from hepatopancreas possess a pronounced capacity for calcium uptake. Exogenous calcium does not stimulate opening of the MPTP, which potentially could reduce cell death during prolonged anoxia. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-0981 1879-1697 |
DOI: | 10.1016/j.jembe.2009.06.008 |