Cooling Effects of Wearer-Controlled Vaporization for Extravehicular Activity
The extravehicular activity suit currently used by the United States in space includes a liquid cooling and ventilation garment (LCVG) that controls thermal conditions. Previously, we demonstrated that self-perspiration for evaporative cooling (SPEC) garment effectively lowers skin temperature witho...
Saved in:
Published in | Aerospace medicine and human performance Vol. 88; no. 4; p. 418 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2017
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | The extravehicular activity suit currently used by the United States in space includes a liquid cooling and ventilation garment (LCVG) that controls thermal conditions. Previously, we demonstrated that self-perspiration for evaporative cooling (SPEC) garment effectively lowers skin temperature without raising humidity in the garment. However, the cooling effect is delayed until a sufficient dose of water permeates and evaporates. In the present study, we hypothesized that wearer-controlled vaporization improves the cooling effect.
Six healthy subjects rode a cycle ergometer under loads of 30, 60, 90, and 120 W for durations of 3 min each. Skin temperature and humidity on the back were measured continuously. Subjects wore and tested three garments: 1) a spandex garment without any cooling device (Normal); 2) a simulated LCVG (s-LCVG) or spandex garment knitted with a vinyl tube for flowing and permeating water; and 3) a garment that allowed wearer-controlled vaporization (SPEC-W).
The use of s-LCVG reduced skin temperature by 1.57 ± 0.14°C during 12 min of cooling. Wearer-controlled vaporization of the SPEC-W effectively and significantly lowered skin temperature from the start to the end of cycle exercise. This decrease was significantly larger than that achieved using s-LCVG. Humidity in the SPEC-W was significantly lower than that in s-LCVG.
This preliminary study suggests that SPEC-W is effective in lowering skin temperature without raising humidity in the garment. The authors think it would be useful in improving the design of a cooling system for extravehicular activity.Tanaka K, Nagao D, Okada K, Nakamura K. Cooling effects of wearer-controlled vaporization for extravehicular activity. Aerosp Med Hum Perform. 2017; 88(4):418-422. |
---|---|
ISSN: | 2375-6314 |
DOI: | 10.3357/AMHP.4583.2017 |