RNA Template-Directed RNA Synthesis by T7 RNA Polymerase

In an attempt to synthesize an oligoribonucleotide by run-off transcription by bacteriophage T7 RNA polymerase, a major transcript was produced that was much longer than expected. Analysis of the reaction indicated that the product resulted from initial DNA-directed run-off transcription followed by...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 91; no. 15; pp. 6972 - 6976
Main Authors Cazenave, Christian, Uhlenbeck, Olke C.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences of the United States of America 19.07.1994
National Acad Sciences
National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In an attempt to synthesize an oligoribonucleotide by run-off transcription by bacteriophage T7 RNA polymerase, a major transcript was produced that was much longer than expected. Analysis of the reaction indicated that the product resulted from initial DNA-directed run-off transcription followed by RNA template-directed RNA synthesis. This reaction occurred because the RNA made from the DNA template displayed self-complementarity at its 3' end and therefore could form an intra- or intermolecular primed template. In reactions containing only an RNA template, the rate of incorporation of NTPs was quite comparable to DNA-dependent transcription. RNA template-directed RNA synthesis has been found to occur with a great number of oligoribonucleotides, even with primed templates that are only marginally stable. In one instance, we observed a multistep extension reaction converting the oligonucleotide into a final product longer than twice its original length. Presumably, such a process could have generated some of the RNAs found to be efficiently replicated by T7 RNA polymerase.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.91.15.6972