Optical characterizations of PMMA/metal oxide nanoparticles thin films: bandgap engineering using a novel derived model

We synthesize and optically characterize pure PMMA and PMMA incorporated with metal oxides nanoparticles (MO NPs) such as ZnO, CuO, TiO2 and SiO2 NPs nanocomposite thin films with weight concentration of 10% using dip-coating technique. SEM images of MO NPs show that all NPs have nearly an average s...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 7; no. 1; p. e05952
Main Authors Al-Bataineh, Qais M., Ahmad, Ahmad.A., Alsaad, A.M., Telfah, Ahmad D.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We synthesize and optically characterize pure PMMA and PMMA incorporated with metal oxides nanoparticles (MO NPs) such as ZnO, CuO, TiO2 and SiO2 NPs nanocomposite thin films with weight concentration of 10% using dip-coating technique. SEM images of MO NPs show that all NPs have nearly an average size of around 50 nm. The optical parameters such as, optical parameters (n and k), optoelectronics properties, dispersion, band-gap energy and band structure of as-prepared nanocomposite thin films were determined by analyzing the transmittance and reflectance spectra. Mainly, optical band-gap energy (Eg) and the thickness of thin films are evaluated to a high degree of accuracy by utilizing Q-functional derived using a mathematical model recently published. The Q(E) is a functional containing experimental transmission and reflection data and the incident photon energy. The Eg value of un-doped PMMA thin films is found to be 4.273 eV. This value decreases as pre-selected MO NPs are introduced into thin films. These values are in excellent agreement with those determined using Tauc method. The FTIR technique is employed to elucidate the vibrational bands of the nanocomposites and the intermolecular bonding between PMMA matrix and the MOs NPs. Thermal stability is investigated by employing thermogravimetric analysis (TGA) at temperatures up to 400 °C. The obtained TGA thermograms indicate that adding MOs NPs to PMMA yield thin films of better thermal stability. The obtained doped thin films show a great promise for fabricating high-efficient optoelectronic devices. Polymethyl methacrylate (PMMA); metal oxides nanoparticles (MO NPs); zinc oxide (ZnO); copper oxide (CuO); silicon dioxide (SiO2); Titanium dioxide (TiO2); optical properties; bandgap energy; FTIR; TGA
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2021.e05952