Positron Emission Tomography Quantification of [ C]-DASB Binding to the Human Serotonin Transporter: Modeling Strategies

[11C]-DASB, namely [11C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile, is a new highly selective radioligand for the in vivo visualization of the serotonin transporter (SERT) using positron emission tomography (PET). The current study evaluates different kinetic modeling strategies...

Full description

Saved in:
Bibliographic Details
Published inJournal of cerebral blood flow and metabolism Vol. 21; no. 11; pp. 1342 - 1353
Main Authors Ginovart, Nathalie, Wilson, Alan A., Meyer, Jeffrey H., Hussey, Doug, Houle, Sylvain
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.11.2001
Lippincott Williams & Wilkins
Sage Publications Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[11C]-DASB, namely [11C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile, is a new highly selective radioligand for the in vivo visualization of the serotonin transporter (SERT) using positron emission tomography (PET). The current study evaluates different kinetic modeling strategies for quantification of [11C]-DASB binding in five healthy humans. Kinetic analyses of tissue data were performed with a one-tissue (1CM) and a two-tissue (2CM) compartment model. Time-activity curves were well described by a 1CM for all regions. A 2CM model with four parameters failed to converge reliably. Reliable fits of the data were obtained only if no more than three parameters were allowed to vary. However, even then, the rate constants k3 and k4 were estimated with poor precision. Only the ratio k3/k4 was stable. Goodness of fit was not improved by using a 2CM as compared with a 1CM. The minimal study duration required to obtain stable k3/k4 estimates was 80 minutes. For routine use of [11C]-DASB, several simplified methods using the cerebellum as a reference region to estimate nonspecific binding were also evaluated. The transient equilibrium, the linear graphical analysis, the ratio of target to reference region, and the simplified reference tissue methods all gave binding potential values consistent with those obtained with the 2CM. The suitability of [11C]-DASB for research on the SERT using PET is thus supported by the observations that tissue data can be described using a kinetic analysis and that simplified quantitative methods, using the cerebellum as reference, provide reliable estimates of SERT binding parameters.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0271-678X
1559-7016
DOI:10.1097/00004647-200111000-00010