Machine learning identification of specific changes in myeloid cell phenotype during bloodstream infections

The early identification of bacteremia is critical for ensuring appropriate treatment of nosocomial infections in intensive care unit (ICU) patients. The aim of this study was to use flow cytometric data of myeloid cells as a biomarker of bloodstream infection (BSI). An eight-color antibody panel wa...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; p. 20288
Main Authors Gosset, Christian, Foguenne, Jacques, Simul, Mickaël, Tomsin, Olivier, Ammar, Hayet, Layios, Nathalie, Massion, Paul B., Damas, Pierre, Gothot, André
Format Journal Article Web Resource
LanguageEnglish
Published London Nature Publishing Group UK 13.10.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The early identification of bacteremia is critical for ensuring appropriate treatment of nosocomial infections in intensive care unit (ICU) patients. The aim of this study was to use flow cytometric data of myeloid cells as a biomarker of bloodstream infection (BSI). An eight-color antibody panel was used to identify seven monocyte and two dendritic cell subsets. In the learning cohort, immunophenotyping was applied to (1) control subjects, (2) postoperative heart surgery patients, as a model of noninfectious inflammatory responses, and (3) blood culture-positive patients. Of the complex changes in the myeloid cell phenotype, a decrease in myeloid and plasmacytoid dendritic cell numbers, increase in CD14 + CD16 + inflammatory monocyte numbers, and upregulation of neutrophils CD64 and CD123 expression were prominent in BSI patients. An extreme gradient boosting (XGBoost) algorithm called the “infection detection and ranging score” (iDAR), ranging from 0 to 100, was developed to identify infection-specific changes in 101 phenotypic variables related to neutrophils, monocytes and dendritic cells. The tenfold cross-validation achieved an area under the receiver operating characteristic (AUROC) of 0.988 (95% CI 0.985–1) for the detection of bacteremic patients. In an out-of-sample, in-house validation, iDAR achieved an AUROC of 0.85 (95% CI 0.71–0.98) in differentiating localized from bloodstream infection and 0.95 (95% CI 0.89–1) in discriminating infected from noninfected ICU patients. In conclusion, a machine learning approach was used to translate the changes in myeloid cell phenotype in response to infection into a score that could identify bacteremia with high specificity in ICU patients.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
scopus-id:2-s2.0-85117422352
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-99628-8