Interstitial hydrogen atoms in face-centered cubic iron in the Earth’s core
Hydrogen is likely one of the light elements in the Earth’s core. Despite its importance, no direct observation has been made of hydrogen in an iron lattice at high pressure. We made the first direct determination of site occupancy and volume of interstitial hydrogen in a face-centered cubic (fcc) i...
Saved in:
Published in | Scientific reports Vol. 9; no. 1; p. 7108 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.05.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hydrogen is likely one of the light elements in the Earth’s core. Despite its importance, no direct observation has been made of hydrogen in an iron lattice at high pressure. We made the first direct determination of site occupancy and volume of interstitial hydrogen in a face-centered cubic (fcc) iron lattice up to 12 GPa and 1200 K using the
in situ
neutron diffraction method. The transition temperatures from the body-centered cubic and the double-hexagonal close-packed phases to the fcc phase were higher than reported previously. At pressures <5 GPa, the hydrogen content in the fcc iron hydride lattice (
x
) was small at
x
< 0.3, but increased to
x
> 0.8 with increasing pressure. Hydrogen atoms occupy both octahedral (O) and tetrahedral (T) sites; typically 0.870(±0.047) in O-sites and 0.057(±0.035) in T-sites at 12 GPa and 1200 K. The fcc lattice expanded approximately linearly at a rate of 2.22(±0.36) Å
3
per hydrogen atom, which is higher than previously estimated (1.9 Å
3
/H). The lattice expansion by hydrogen dissolution was negligibly dependent on pressure. The large lattice expansion by interstitial hydrogen reduced the estimated hydrogen content in the Earth’s core that accounted for the density deficit of the core. The revised analyses indicate that whole core may contain hydrogen of 80(±31) times of the ocean mass with 79(±30) and 0.8(±0.3) ocean mass for the outer and inner cores, respectively. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-43601-z |