A Monoclonal Antibody Against Kinesin Inhibits Both Anterograde and Retrograde Fast Axonal Transport in Squid Axoplasm

One of our monoclonal antibodies against the heavy chain of bovine kinesin (H2) also recognized the heavy chain of squid kinesin. The immunofluorescence pattern of H2 in axoplasm was similar to that seen in mammalian cells with antibodies specific for kinesin light and heavy chains, indicating that...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 87; no. 3; pp. 1061 - 1065
Main Authors Brady, Scott T., Pfister, K. Kevin, Bloom, George S.
Format Journal Article
LanguageEnglish
Published Washington, DC National Academy of Sciences of the United States of America 01.02.1990
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:One of our monoclonal antibodies against the heavy chain of bovine kinesin (H2) also recognized the heavy chain of squid kinesin. The immunofluorescence pattern of H2 in axoplasm was similar to that seen in mammalian cells with antibodies specific for kinesin light and heavy chains, indicating that squid kinesin is also concentrated on membrane-bounded organelles. Although kinesin is assumed to be a motor for translocation of membrane-bounded organelles in fast axonal transport, direct evidence has been lacking. Perfusion of axoplasm with purified H2 at 0.1-0.4 mg/ml resulted in a profound inhibition of both the rates and number of organelles moving in anterograde and retrograde directions in the interior of the axoplasm, and comparable inhibition was noted in bidirectional movement along individual microtubules at the periphery. Maximal inhibition developed over 30-60 min. Perfusion with higher concentrations of H2 ($>$1 mg of IgG per ml) were less effective, whereas perfusion with 0.04 mg of H2 per ml resulted in minimal inhibition. Movement of membrane-bounded organelles after perfusion with comparable levels of irrelevant mouse IgG (0.04 to$>$1 mg/ml) were not distinguishable from perfusion with buffer controls. Inhibition of fast axonal transport by an antibody specific for kinesin provides direct evidence that kinesin is involved in the translocation of membrane-bounded organelles in axons. Moreover, the inhibition of bidirectional axonal transport by H2 raises the possibility that kinesin may play some role in both anterograde and retrograde axonal transport.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.87.3.1061