Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet
Driving and controlling single-skyrmion motion promises skyrmion-based spintronic applications. Recently progress has been made in moving skyrmionic bubbles in thin-film heterostructures and low-temperature chiral skyrmions in the FeGe helimagnet by electric current. Here, we report the motion track...
Saved in:
Published in | Nature communications Vol. 12; no. 1; p. 6797 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.11.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Driving and controlling single-skyrmion motion promises skyrmion-based spintronic applications. Recently progress has been made in moving skyrmionic bubbles in thin-film heterostructures and low-temperature chiral skyrmions in the FeGe helimagnet by electric current. Here, we report the motion tracking and control of a single skyrmion at room temperature in the chiral-lattice magnet Co
9
Zn
9
Mn
2
using nanosecond current pulses. We have directly observed that the skyrmion Hall motion reverses its direction upon the reversal of skyrmion topological number using Lorentz transmission electron microscopy. Systematic measurements of the single-skyrmion trace as a function of electric current reveal a dynamic transition from the static pinned state to the linear flow motion via a creep event, in agreement with the theoretical prediction. We have clarified the role of skyrmion pinning and evaluated the intrinsic skyrmion Hall angle and the skyrmion velocity in the course of the dynamic transition. Our results pave a way to skyrmion applications in spintronic devices.
Skyrmions, topological spin textures, have attracted interest for use in spin-based information processing. Here, Peng et al analyse the current driven motion of a single skyrmion at room temperature in a chiral-lattice magnet, tracking the motion using Lorentz transmission electron microscopy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-27073-2 |