Effects of one- and three-day binge alcohol exposure in neonatal C57BL/6 mice on spatial learning and memory in adolescence and adulthood

Abstract Binge-like alcohol exposure during the early postnatal period in rats and mice causes deficits in spatial learning and memory that persist into adulthood. Wozniak et al. (2004) reported that heavy binge alcohol exposure on postnatal day 7 (PD 7) in C57BL/6 (B6) mice produced profound spatia...

Full description

Saved in:
Bibliographic Details
Published inAlcohol (Fayetteville, N.Y.) Vol. 48; no. 2; pp. 99 - 111
Main Authors Wagner, Jennifer L, Zhou, Feng C, Goodlett, Charles R
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2014
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Binge-like alcohol exposure during the early postnatal period in rats and mice causes deficits in spatial learning and memory that persist into adulthood. Wozniak et al. (2004) reported that heavy binge alcohol exposure on postnatal day 7 (PD 7) in C57BL/6 (B6) mice produced profound spatial learning deficits in the Morris water maze when tested in adolescence (P30–39); when tested in adulthood, however, the deficits were greatly attenuated. Using a similar PD 7 binge alcohol exposure paradigm in B6 mice, we tested whether a single-day (PD 7 only) alcohol treatment produced place learning deficits in both adolescence and in adulthood, and further tested whether a more extended (3-day, PD 7–9) alcohol exposure would induce more severe and enduring deficits. B6 mice were given either 2 subcutaneous injections of alcohol (2.5 g/kg each) 2 h apart on PD 7 or on PD 7–9, and compared with controls that received saline vehicle injections and controls that received no injections. The alcohol injections on PD 7 produced average peak blood alcohol concentrations of 472 mg/dL and evoked typical patterns of activated caspase-3-positive neurons in the cortex, hippocampal formation, and striatum 6 h after the last injection. Mice were given standard place training or random location training in the Morris water maze either as adolescents (PD 30–39) or adults (PD 70–79). The adolescents acquired the place learning more slowly than adults, and the alcohol treatments produced only modest place acquisition deficits. In contrast, both the PD7 and the PD 7–9 alcohol treatments resulted in large and significant spatial learning impairments in adults. In contrast to the previous findings of Wozniak et al. (2004), these results indicate that binge alcohol exposure in the 3rd trimester equivalent produces significant and enduring deficits in spatial learning in B6 mice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0741-8329
1873-6823
DOI:10.1016/j.alcohol.2013.12.001