A computational framework to establish data-driven constitutive models for time- or path-dependent heterogeneous solids

We propose and implement a computational procedure to establish data-driven surrogate constitutive models for heterogeneous materials. We study the multiaxial response of non-linear n-phase composites via Finite Element (FE) simulations and computational homogenisation. Pseudo-random, multiaxial, no...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 15916 - 18
Main Authors Ge, Weijian, Tagarielli, Vito L.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.08.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose and implement a computational procedure to establish data-driven surrogate constitutive models for heterogeneous materials. We study the multiaxial response of non-linear n-phase composites via Finite Element (FE) simulations and computational homogenisation. Pseudo-random, multiaxial, non-proportional histories of macroscopic strain are imposed on volume elements of n-phase composites, subject to periodic boundary conditions, and the corresponding histories of macroscopic stresses and plastically dissipated energy are recorded. The recorded data is used to train surrogate, phenomenological constitutive models based on neural networks (NNs), and the accuracy of these models is assessed and discussed. We analyse heterogeneous composites with hyperelastic, viscoelastic or elastic–plastic local constitutive descriptions. In each of these three cases, we propose and assess optimal choices of inputs and outputs for the surrogate models and strategies for their training. We find that the proposed computational procedure can capture accurately and effectively the response of non-linear n-phase composites subject to arbitrary mechanical loading.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-94957-0