Three-dimensional conditional generative adversarial network-based virtual thin-slice technique for the morphological evaluation of the spine

Virtual thin-slice (VTS) technique is a generative adversarial network-based algorithm that can generate virtual 1-mm-thick CT images from images of 3–10-mm thickness. We evaluated the performance of VTS technique for assessment of the spine. VTS was applied to 4-mm-thick CT images of 73 patients, a...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 12176 - 8
Main Authors Nakamoto, Atsushi, Hori, Masatoshi, Onishi, Hiromitsu, Ota, Takashi, Fukui, Hideyuki, Ogawa, Kazuya, Masumoto, Jun, Kudo, Akira, Kitamura, Yoshiro, Kido, Shoji, Tomiyama, Noriyuki
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.07.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-022-16637-x

Cover

Abstract Virtual thin-slice (VTS) technique is a generative adversarial network-based algorithm that can generate virtual 1-mm-thick CT images from images of 3–10-mm thickness. We evaluated the performance of VTS technique for assessment of the spine. VTS was applied to 4-mm-thick CT images of 73 patients, and the visibility of intervertebral spaces was evaluated on the 4-mm-thick and VTS images. The heights of vertebrae measured on sagittal images reconstructed from the 4-mm-thick images and VTS images were compared with those measured on images reconstructed from 1-mm-thick images. Diagnostic performance for the detection of compression fractures was also compared. The intervertebral spaces were significantly more visible on the VTS images than on the 4-mm-thick images ( P  < 0.001). The absolute value of the measured difference in mean vertebral height between the VTS and 1-mm-thick images was smaller than that between the 4-mm-thick and 1-mm-thick images ( P  < 0.01–0.54). The diagnostic performance of the VTS images for detecting compression fracture was significantly lower than that of the 4-mm-thick images for one reader ( P  = 0.02). VTS technique enabled the identification of each vertebral body, and enabled accurate measurement of vertebral height. However, this technique is not suitable for diagnosing compression fractures.
AbstractList Virtual thin-slice (VTS) technique is a generative adversarial network-based algorithm that can generate virtual 1-mm-thick CT images from images of 3–10-mm thickness. We evaluated the performance of VTS technique for assessment of the spine. VTS was applied to 4-mm-thick CT images of 73 patients, and the visibility of intervertebral spaces was evaluated on the 4-mm-thick and VTS images. The heights of vertebrae measured on sagittal images reconstructed from the 4-mm-thick images and VTS images were compared with those measured on images reconstructed from 1-mm-thick images. Diagnostic performance for the detection of compression fractures was also compared. The intervertebral spaces were significantly more visible on the VTS images than on the 4-mm-thick images (P < 0.001). The absolute value of the measured difference in mean vertebral height between the VTS and 1-mm-thick images was smaller than that between the 4-mm-thick and 1-mm-thick images (P < 0.01–0.54). The diagnostic performance of the VTS images for detecting compression fracture was significantly lower than that of the 4-mm-thick images for one reader (P = 0.02). VTS technique enabled the identification of each vertebral body, and enabled accurate measurement of vertebral height. However, this technique is not suitable for diagnosing compression fractures.
Virtual thin-slice (VTS) technique is a generative adversarial network-based algorithm that can generate virtual 1-mm-thick CT images from images of 3-10-mm thickness. We evaluated the performance of VTS technique for assessment of the spine. VTS was applied to 4-mm-thick CT images of 73 patients, and the visibility of intervertebral spaces was evaluated on the 4-mm-thick and VTS images. The heights of vertebrae measured on sagittal images reconstructed from the 4-mm-thick images and VTS images were compared with those measured on images reconstructed from 1-mm-thick images. Diagnostic performance for the detection of compression fractures was also compared. The intervertebral spaces were significantly more visible on the VTS images than on the 4-mm-thick images (P < 0.001). The absolute value of the measured difference in mean vertebral height between the VTS and 1-mm-thick images was smaller than that between the 4-mm-thick and 1-mm-thick images (P < 0.01-0.54). The diagnostic performance of the VTS images for detecting compression fracture was significantly lower than that of the 4-mm-thick images for one reader (P = 0.02). VTS technique enabled the identification of each vertebral body, and enabled accurate measurement of vertebral height. However, this technique is not suitable for diagnosing compression fractures.Virtual thin-slice (VTS) technique is a generative adversarial network-based algorithm that can generate virtual 1-mm-thick CT images from images of 3-10-mm thickness. We evaluated the performance of VTS technique for assessment of the spine. VTS was applied to 4-mm-thick CT images of 73 patients, and the visibility of intervertebral spaces was evaluated on the 4-mm-thick and VTS images. The heights of vertebrae measured on sagittal images reconstructed from the 4-mm-thick images and VTS images were compared with those measured on images reconstructed from 1-mm-thick images. Diagnostic performance for the detection of compression fractures was also compared. The intervertebral spaces were significantly more visible on the VTS images than on the 4-mm-thick images (P < 0.001). The absolute value of the measured difference in mean vertebral height between the VTS and 1-mm-thick images was smaller than that between the 4-mm-thick and 1-mm-thick images (P < 0.01-0.54). The diagnostic performance of the VTS images for detecting compression fracture was significantly lower than that of the 4-mm-thick images for one reader (P = 0.02). VTS technique enabled the identification of each vertebral body, and enabled accurate measurement of vertebral height. However, this technique is not suitable for diagnosing compression fractures.
Virtual thin-slice (VTS) technique is a generative adversarial network-based algorithm that can generate virtual 1-mm-thick CT images from images of 3–10-mm thickness. We evaluated the performance of VTS technique for assessment of the spine. VTS was applied to 4-mm-thick CT images of 73 patients, and the visibility of intervertebral spaces was evaluated on the 4-mm-thick and VTS images. The heights of vertebrae measured on sagittal images reconstructed from the 4-mm-thick images and VTS images were compared with those measured on images reconstructed from 1-mm-thick images. Diagnostic performance for the detection of compression fractures was also compared. The intervertebral spaces were significantly more visible on the VTS images than on the 4-mm-thick images ( P  < 0.001). The absolute value of the measured difference in mean vertebral height between the VTS and 1-mm-thick images was smaller than that between the 4-mm-thick and 1-mm-thick images ( P  < 0.01–0.54). The diagnostic performance of the VTS images for detecting compression fracture was significantly lower than that of the 4-mm-thick images for one reader ( P  = 0.02). VTS technique enabled the identification of each vertebral body, and enabled accurate measurement of vertebral height. However, this technique is not suitable for diagnosing compression fractures.
Abstract Virtual thin-slice (VTS) technique is a generative adversarial network-based algorithm that can generate virtual 1-mm-thick CT images from images of 3–10-mm thickness. We evaluated the performance of VTS technique for assessment of the spine. VTS was applied to 4-mm-thick CT images of 73 patients, and the visibility of intervertebral spaces was evaluated on the 4-mm-thick and VTS images. The heights of vertebrae measured on sagittal images reconstructed from the 4-mm-thick images and VTS images were compared with those measured on images reconstructed from 1-mm-thick images. Diagnostic performance for the detection of compression fractures was also compared. The intervertebral spaces were significantly more visible on the VTS images than on the 4-mm-thick images (P < 0.001). The absolute value of the measured difference in mean vertebral height between the VTS and 1-mm-thick images was smaller than that between the 4-mm-thick and 1-mm-thick images (P < 0.01–0.54). The diagnostic performance of the VTS images for detecting compression fracture was significantly lower than that of the 4-mm-thick images for one reader (P = 0.02). VTS technique enabled the identification of each vertebral body, and enabled accurate measurement of vertebral height. However, this technique is not suitable for diagnosing compression fractures.
ArticleNumber 12176
Author Tomiyama, Noriyuki
Kido, Shoji
Ota, Takashi
Kitamura, Yoshiro
Hori, Masatoshi
Onishi, Hiromitsu
Kudo, Akira
Ogawa, Kazuya
Fukui, Hideyuki
Nakamoto, Atsushi
Masumoto, Jun
Author_xml – sequence: 1
  givenname: Atsushi
  surname: Nakamoto
  fullname: Nakamoto, Atsushi
  email: a-nakamoto@radiol.med.osaka-u.ac.jp
  organization: Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
– sequence: 2
  givenname: Masatoshi
  surname: Hori
  fullname: Hori, Masatoshi
  organization: Department of Radiology, Kobe University Graduate School of Medicine
– sequence: 3
  givenname: Hiromitsu
  surname: Onishi
  fullname: Onishi, Hiromitsu
  organization: Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
– sequence: 4
  givenname: Takashi
  surname: Ota
  fullname: Ota, Takashi
  organization: Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
– sequence: 5
  givenname: Hideyuki
  surname: Fukui
  fullname: Fukui, Hideyuki
  organization: Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
– sequence: 6
  givenname: Kazuya
  surname: Ogawa
  fullname: Ogawa, Kazuya
  organization: Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
– sequence: 7
  givenname: Jun
  surname: Masumoto
  fullname: Masumoto, Jun
  organization: Medical System Research and Development Center, FUJIFILM Corporation
– sequence: 8
  givenname: Akira
  surname: Kudo
  fullname: Kudo, Akira
  organization: Imaging Technology Center, FUJIFILM Corporation
– sequence: 9
  givenname: Yoshiro
  surname: Kitamura
  fullname: Kitamura, Yoshiro
  organization: Imaging Technology Center, FUJIFILM Corporation
– sequence: 10
  givenname: Shoji
  surname: Kido
  fullname: Kido, Shoji
  organization: Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine
– sequence: 11
  givenname: Noriyuki
  surname: Tomiyama
  fullname: Tomiyama, Noriyuki
  organization: Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
BookMark eNp9UstuFDEQHKEgEkJ-gNNIXLgM-DlrX5BQxCNSJC7hbPnRM-tl1l5szyZ8BP-MdycCkkN8cau7qrrVXS-bkxADNM1rjN5hRMX7zDCXokOEdLjv6aq7e9acEcR4RyghJ__Fp81FzhtUHyeSYfmiOaVcMMI4Pmt-36wTQOf8FkL2MeiptTE4X5Z4hABJF7-HVrs9pKyTr-kA5TamH53RGVy796nMNVvWPnR58hbaAnYd_M8Z2iGmWoB2G9NuHac4eluhsNfTrA9N2jgc63nnA7xqng96ynBx_5833z9_urn82l1_-3J1-fG6s1zQ0nEYVlQbxK1DvAcxMMOkcL0Ezg0SYCxxVALG2DEgFEmpDQzgVhoNA3eGnjdXi66LeqN2yW91-qWi9uqYiGlUOhVvJ1AWMTeAkdZYypCTQojeYmK1kWBof9D6sGjtZrMFZyGUpKcHog8rwa_VGPdKEiEY5VXg7b1AinVjuaitzxamSQeIc1aklxhx3BNUoW8eQTdxTvVQRxSiFdmvKoosKJtizgmGv8NgpA7mUYt5VDWPOppH3VWSeESyvhwvVIf209NUulBz7RNGSP-meoL1B6eL4Dc
CitedBy_id crossref_primary_10_1016_j_ejrad_2024_111313
crossref_primary_10_3390_diagnostics15010050
crossref_primary_10_3390_tomography11020013
Cites_doi 10.1007/s11604-018-0795-3
10.1002/mp.13617
10.1002/mp.13284
10.1002/mp.13047
10.1148/radiol.2273020592
10.1007/s11604-020-00998-2
10.1007/s11604-018-0804-6
10.1007/s00774-013-0441-1
10.1016/j.acra.2019.12.024
10.1007/s11604-021-01098-5
10.1118/1.1769352
10.1053/j.sult.2003.11.001
10.1109/TMI.2018.2827462
10.1080/02841850903085584
10.1109/ACCESS.2018.2858196
10.1148/radiographics.21.suppl_1.g01oc04s71
10.1007/978-3-030-33843-5_9
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-16637-x
DatabaseName Springer Nature OA Free Journals (Selected full-text)
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database (via ProQuest SciTech Premium Collection)
ProQuest Biological Science
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic


CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 8
ExternalDocumentID oai_doaj_org_article_c04dfeb9cbc340d98886c12cab9eb36b
PMC9288435
10_1038_s41598_022_16637_x
GrantInformation_xml – fundername: Fujifilm Corporation
  funderid: http://dx.doi.org/10.13039/501100002424
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c583t-5ef73ab05cd056e8f4b498d69e55b08ebc2d39e111d4e23099abefed7a0ff5db3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:25:14 EDT 2025
Thu Aug 21 14:00:08 EDT 2025
Fri Sep 05 05:57:54 EDT 2025
Wed Aug 13 04:20:13 EDT 2025
Thu Apr 24 23:44:07 EDT 2025
Tue Jul 01 04:16:53 EDT 2025
Fri Feb 21 02:39:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-5ef73ab05cd056e8f4b498d69e55b08ebc2d39e111d4e23099abefed7a0ff5db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-16637-x
PMID 35842451
PQID 2690369167
PQPubID 2041939
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_c04dfeb9cbc340d98886c12cab9eb36b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9288435
proquest_miscellaneous_2691051620
proquest_journals_2690369167
crossref_primary_10_1038_s41598_022_16637_x
crossref_citationtrail_10_1038_s41598_022_16637_x
springer_journals_10_1038_s41598_022_16637_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-16
PublicationDateYYYYMMDD 2022-07-16
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Onishi (CR18) 2019; 2019
Crim, Tripp (CR2) 2004; 25
Ueda, Shimazaki, Miki (CR7) 2019; 37
Sorin, Barash, Konen, Klang (CR8) 2020; 27
CR14
Nakata (CR6) 2019; 37
Chakraborty, Berbaum (CR16) 2004; 31
You (CR11) 2018; 6
Yang (CR10) 2018; 37
Emami, Dong, Nejad-Davarani, Glide-Hurst (CR12) 2018; 45
Lei (CR13) 2019; 46
Barat (CR5) 2021; 39
Mori (CR15) 2013; 31
Zachrisson (CR17) 2009; 50
Ji, McTavish, Mortele, Wiesner, Ros (CR1) 2001; 21
Wintermark (CR3) 2003; 227
Wataya, Nakanishi, Suzuki, Kido, Tomiyama (CR4) 2020; 38
Kang, Koo, Yang, Seo, Ye (CR9) 2019; 46
N Nakata (16637_CR6) 2019; 37
V Sorin (16637_CR8) 2020; 27
S Mori (16637_CR15) 2013; 31
E Kang (16637_CR9) 2019; 46
Y Lei (16637_CR13) 2019; 46
T Wataya (16637_CR4) 2020; 38
Q Yang (16637_CR10) 2018; 37
JR Crim (16637_CR2) 2004; 25
H Emami (16637_CR12) 2018; 45
16637_CR14
M Barat (16637_CR5) 2021; 39
H Ji (16637_CR1) 2001; 21
S Zachrisson (16637_CR17) 2009; 50
Y Onishi (16637_CR18) 2019; 2019
C You (16637_CR11) 2018; 6
M Wintermark (16637_CR3) 2003; 227
DP Chakraborty (16637_CR16) 2004; 31
D Ueda (16637_CR7) 2019; 37
References_xml – volume: 37
  start-page: 15
  year: 2019
  end-page: 33
  ident: CR7
  article-title: Technical and clinical overview of deep learning in radiology
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-018-0795-3
– volume: 46
  start-page: 3565
  year: 2019
  end-page: 3581
  ident: CR13
  article-title: MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks
  publication-title: Med. Phys.
  doi: 10.1002/mp.13617
– volume: 46
  start-page: 550
  year: 2019
  end-page: 562
  ident: CR9
  article-title: Cycle-consistent adversarial denoising network for multiphase coronary CT angiography
  publication-title: Med. Phys.
  doi: 10.1002/mp.13284
– volume: 2019
  start-page: 6051939
  year: 2019
  ident: CR18
  article-title: Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network trained by generative adversarial networks
  publication-title: Biomed. Res. Int.
– volume: 45
  start-page: 3627
  year: 2018
  end-page: 3636
  ident: CR12
  article-title: Generating synthetic CTs from magnetic resonance images using generative adversarial networks
  publication-title: Med. Phys.
  doi: 10.1002/mp.13047
– volume: 227
  start-page: 681
  year: 2003
  end-page: 689
  ident: CR3
  article-title: Thoracolumbar spine fractures in patients who have sustained severe trauma: Depiction with multi-detector row CT
  publication-title: Radiology
  doi: 10.1148/radiol.2273020592
– volume: 38
  start-page: 907
  year: 2020
  end-page: 921
  ident: CR4
  article-title: Introduction to deep learning: Minimum essence required to launch a research
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-020-00998-2
– volume: 37
  start-page: 103
  year: 2019
  end-page: 108
  ident: CR6
  article-title: Recent technical development of artificial intelligence for diagnostic medical imaging
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-018-0804-6
– ident: CR14
– volume: 31
  start-page: 258
  year: 2013
  end-page: 261
  ident: CR15
  article-title: Justification criteria for vertebral fractures: Year 2012 revision
  publication-title: J. Bone. Miner. Metab.
  doi: 10.1007/s00774-013-0441-1
– volume: 27
  start-page: 1175
  year: 2020
  end-page: 1185
  ident: CR8
  article-title: Creating artificial images for radiology applications using generative adversarial networks (GANs)—A systematic review
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2019.12.024
– volume: 39
  start-page: 514
  year: 2021
  end-page: 523
  ident: CR5
  article-title: Artificial intelligence: A critical review of current applications in pancreatic imaging
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-021-01098-5
– volume: 31
  start-page: 2313
  year: 2004
  end-page: 2330
  ident: CR16
  article-title: Observer studies involving detection and localization: Modeling, analysis, and validation
  publication-title: Med. Phys.
  doi: 10.1118/1.1769352
– volume: 25
  start-page: 55
  year: 2004
  end-page: 66
  ident: CR2
  article-title: Multidetector CT of the spine
  publication-title: Semin. Ultrasound. CT. MR.
  doi: 10.1053/j.sult.2003.11.001
– volume: 37
  start-page: 1348
  year: 2018
  end-page: 1357
  ident: CR10
  article-title: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss
  publication-title: IEEE. Trans. Med. Imaging.
  doi: 10.1109/TMI.2018.2827462
– volume: 50
  start-page: 884
  year: 2009
  end-page: 891
  ident: CR17
  article-title: Effect of clinical experience of chest tomosynthesis on detection of pulmonary nodules
  publication-title: Acta. Radiol.
  doi: 10.1080/02841850903085584
– volume: 6
  start-page: 41839
  year: 2018
  end-page: 41855
  ident: CR11
  article-title: Structurally-sensitive multi-scale deep neural network for low-dose CT denoising
  publication-title: IEEE. Access.
  doi: 10.1109/ACCESS.2018.2858196
– volume: 21
  start-page: S71
  year: 2001
  end-page: 80
  ident: CR1
  article-title: Hepatic imaging with multidetector CT
  publication-title: Radiographics
  doi: 10.1148/radiographics.21.suppl_1.g01oc04s71
– volume: 31
  start-page: 258
  year: 2013
  ident: 16637_CR15
  publication-title: J. Bone. Miner. Metab.
  doi: 10.1007/s00774-013-0441-1
– volume: 46
  start-page: 550
  year: 2019
  ident: 16637_CR9
  publication-title: Med. Phys.
  doi: 10.1002/mp.13284
– volume: 31
  start-page: 2313
  year: 2004
  ident: 16637_CR16
  publication-title: Med. Phys.
  doi: 10.1118/1.1769352
– volume: 50
  start-page: 884
  year: 2009
  ident: 16637_CR17
  publication-title: Acta. Radiol.
  doi: 10.1080/02841850903085584
– volume: 37
  start-page: 103
  year: 2019
  ident: 16637_CR6
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-018-0804-6
– volume: 46
  start-page: 3565
  year: 2019
  ident: 16637_CR13
  publication-title: Med. Phys.
  doi: 10.1002/mp.13617
– volume: 21
  start-page: S71
  year: 2001
  ident: 16637_CR1
  publication-title: Radiographics
  doi: 10.1148/radiographics.21.suppl_1.g01oc04s71
– volume: 6
  start-page: 41839
  year: 2018
  ident: 16637_CR11
  publication-title: IEEE. Access.
  doi: 10.1109/ACCESS.2018.2858196
– volume: 37
  start-page: 15
  year: 2019
  ident: 16637_CR7
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-018-0795-3
– volume: 2019
  start-page: 6051939
  year: 2019
  ident: 16637_CR18
  publication-title: Biomed. Res. Int.
– volume: 45
  start-page: 3627
  year: 2018
  ident: 16637_CR12
  publication-title: Med. Phys.
  doi: 10.1002/mp.13047
– ident: 16637_CR14
  doi: 10.1007/978-3-030-33843-5_9
– volume: 25
  start-page: 55
  year: 2004
  ident: 16637_CR2
  publication-title: Semin. Ultrasound. CT. MR.
  doi: 10.1053/j.sult.2003.11.001
– volume: 37
  start-page: 1348
  year: 2018
  ident: 16637_CR10
  publication-title: IEEE. Trans. Med. Imaging.
  doi: 10.1109/TMI.2018.2827462
– volume: 27
  start-page: 1175
  year: 2020
  ident: 16637_CR8
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2019.12.024
– volume: 38
  start-page: 907
  year: 2020
  ident: 16637_CR4
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-020-00998-2
– volume: 227
  start-page: 681
  year: 2003
  ident: 16637_CR3
  publication-title: Radiology
  doi: 10.1148/radiol.2273020592
– volume: 39
  start-page: 514
  year: 2021
  ident: 16637_CR5
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-021-01098-5
SSID ssj0000529419
Score 2.3847134
Snippet Virtual thin-slice (VTS) technique is a generative adversarial network-based algorithm that can generate virtual 1-mm-thick CT images from images of 3–10-mm...
Virtual thin-slice (VTS) technique is a generative adversarial network-based algorithm that can generate virtual 1-mm-thick CT images from images of 3-10-mm...
Abstract Virtual thin-slice (VTS) technique is a generative adversarial network-based algorithm that can generate virtual 1-mm-thick CT images from images of...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12176
SubjectTerms 692/698/1671
692/699/578
Abdomen
Algorithms
Aortic aneurysms
Artificial intelligence
Compression
Humanities and Social Sciences
Morphology
multidisciplinary
Patients
R&D
Radiology
Regulatory approval
Research & development
Scanners
Science
Science (multidisciplinary)
Software
Spine
University graduates
Vertebrae
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SENyI9YFjq0Rwp6GZJJPHUsVSBF210F3I017QuaX3VuqP6H_2JJl72ymoG7eTDJPJOcn5vjy-g9AbIGtAjSUlzARBhBOeeKkiUZyLnFVk0pUF_S9f5dGJ-Hw6nN5K9VXOhDV54NZxB4GKmJM3wQcuaDTA2GToWXDeAA-Uvsy-1NBbZKqpejMjejPdkqFcH6wgUpXbZMC9eoiyilzNIlEV7J-hzLtnJO9slNb4c_gIPZyAI37fGryL7qXxMbrfUkn-eoKuj8EoicQi1t-ENjAw3bhoS334W1WXLlMbdiUF88oVx8NjOwROSiyL-OfiotwmweuzxUgAf4aEtxKvGMAtFCT8YwmW2cyY-EYsHC9zLV-dA259ik4OPx1_PCJTqgUSBs3XZEhZcefpECIgoqSz8MLoKE0aBk918oFFbhJMjFEkYC3GOJ9yisrRnIfo-TO0My7H9Bzh2CvqgXCLPhRuE73imgmoybzQ3vEO9Ztut2HSIS_pML7buh_OtW2msmAqW01lrzr0dvvOeVPh-GvtD8Wa25pFQbs-AL-yk1_Zf_lVh_Y3vmCnYb2yTBqI-ICoVYdeb4thQJZdFjem5WWtA5i1l4x2SM18aNagecm4OKvS3oZpDQC2Q-823nbz8T__8Iv_8cN76AEro6OIhsp9tLO-uEwvAXCt_as6tn4DU3kuQw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxUxEA5aEXwRr7haJYJvGrqbZHN5EhVLEfSphfMWctv2gO6enj2V-iP8z06yl8MW7Osmy15mMvPNTPINQu8gWIPQWJSEas8Jt9wRJ2QgkjHeNDJQYVNC__sPcXLGv63q1Zhw68dtlZNNzIY6dD7lyI8ohHFMAJiRHzeXJHWNStXVsYXGXXQvU5eBPsuVnHMsqYrFKz2elSmZOurBX6UzZRCBVeBrJble-KNM27_Amjd3St4ol2YvdPwIPRzhI_40yPsxuhPbJ-j-0FDyz1P09xREE0lIlP0D3QaGeDesh4QfPs8c08nAYZsaMfc2qR9uh63gJHm0gH-vt-lMCd5drFsCKNRHPBO9YoC4MBDxrw7kM9lNvKcMx12Tx_sNoNdn6Oz46-mXEzI2XCC-VmxH6thIZl1Z-wC4KKqGO65VEDrWtStVdJ4GpiOYx8AjxC5aWxebGKQtm6YOjj1HB23XxhcIh0qWDsJuXvkU4QQnmaIcZlLHlbOsQNX0240f2chTU4yfJlfFmTKDqAyIymRRmesCvZ_v2QxcHLfO_pykOc9MPNr5Qrc9N-OyNL7koYlOe-cZL4NWSglfUW-djo4JV6DDSRfMuLh7s1fFAr2dh2FZplqLbWN3lecAcq0ELQskFzq0eKHlSLu-yATfmioFMLZAHyZt2z_8_x_88vZ3fYUe0KT3iRRUHKKD3fYqvgZAtXNv8qr5B7y3JDk
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (Selected full-text)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEA6lIvgi9YZbq0TwTYO7STaXRz1YiqBPLfQt5Noe0N1yzqnoj-h_dpK9lC0q-LqZsNmdSeabZPINQm8gWIPQWNSEas8Jt9wRJ2QgkjGekgxU2Lyh_-WrODnjn8_b8z1Ep7swJWm_UFqWZXrKDnu_BUeTL4NB6NSAk5QEcOM9BXFdtuqVWM37Kvnkijd6vB9TM_WHrgsfVKj6F_jybnbknSPS4nmOD9DDETLiD8MgH6G92D1G94cikr-eoJtTUEckIdP0DxQbGGLcsB42-fBF4ZXOixq2ufjy1maTw92Q_k2yFwv4x3qT75Hg3eW6I4A8fcQzuSsGWAsNEX_vQSfTWolvacJxn0r79goQ61N0dvzpdHVCxiILxLeK7Ugbk2TW1a0PgIWiStxxrYLQsW1draLzNDAdYUkMPEK8orV1McUgbZ1SGxx7hva7vovPEQ6NrB2ohDc-RzXBSaYoB0nquHKWVaiZfrvxIwN5LoTxzZSTcKbMoCoDqjJFVeZnhd7Ofa4G_o1_Sn_M2pwlM3d2edBvLsxoS8bXPKTotHee8TpopZTwDfXW6eiYcBU6mmzBjBN6a6jQ4OsBS8sKvZ6bYSrm8xXbxf66yABabQStKyQXNrQY0LKlW18WUm9NlQLoWqF3k7XdvvzvH3z4f-Iv0AOa50EmBhVHaH-3uY4vAVTt3Ksyi34DTtAiiQ
  priority: 102
  providerName: Springer Nature
Title Three-dimensional conditional generative adversarial network-based virtual thin-slice technique for the morphological evaluation of the spine
URI https://link.springer.com/article/10.1038/s41598-022-16637-x
https://www.proquest.com/docview/2690369167
https://www.proquest.com/docview/2691051620
https://pubmed.ncbi.nlm.nih.gov/PMC9288435
https://doaj.org/article/c04dfeb9cbc340d98886c12cab9eb36b
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpQksupU_iNl1U6K1Va0uyHodSNktCWEgobRb2ZqyHk4XUTnc3JfkR_c8dyfaGDUkOPRksGT9mRvN9kvUNQh-ArAE1Fimh2nLCS26IEdIRyRivKumoKMOE_tGxOJzw8TSfbqC-3FH3ARd3UrtQT2oyP_989fv6GwT813bLuPqygCQUNooBrcoggUoCmHILMpMIZOyog_ut1jfVPNPd3pm7L91GTxgkZcrzbC1VRUX_NRh6-yfKWyupMUEdPENPO2SJh60rPEcbvn6BHre1Jq9for8nYDVPXFDzb5U4MFBhN2vnAvFplJ8OYx8uQ43mRRk8E9ftX-IkJDuH_8zmYbsJXp7NagIA1Xq80oDFgH6hweNfDZiuH1LxjZo4bqrYvrgAYPsKTQ72T0aHpKvFQGyu2JLkvpKsNGluHUAmrypuuFZOaJ_nJlXeWOqY9jByOu6B1mhdGl95J8u0qnJn2Gu0WTe130HYZTI1wMh5ZgP5cUYyRTn0pIYrU7IEZf1nL2wnVB7qZZwXccGcqaK1WgFWK6LViqsEfVxdc9HKdDzYey9Yc9UzSGzHE838tOgitrApd5U32hrLeOq0UkrYjNrSaG-YMAna7X2h6N22oEIDJADILRP0ftUMERuWYcraN5exD4DaTNA0QXLNh9YeaL2lnp1F7W9NlQKEm6BPvbfd3Pz-F37z3zd6i7ZpiI4gJSp20eZyfunfAQxbmgF6JKdygLaGw_HPMRz39o-__4CzIzEaxKmNQYy-f2kkOuA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAguiKdYKGAkOIHVXdu7ax8QotAqpW2EUCv1ZtaPbSPBbkhSaH8Ef4XfyHgfiVKJ3nqNncS783keHs83AK8wWMPQOIspU1ZQUQhDTZY7mnMuyjJ3LCvCgf7BKBseic_H6fEa_O1rYcK1yl4nNora1TackW8yDON4hs5M_n7yk4auUSG72rfQaGGx5y9-Y8g2e7f7CeX7mrGd7cOPQ9p1FaA2lXxOU1_mvDBxah0afy9LYYSSLlM-TU0svbHMceVRBzjh0UFXqjC-9C4v4rJMneH4uzdgXYSK1gGsb22PvnxdnOqEvJlIVFedE3O5OUMLGarYMOZL0Lrn9HzFAjaNAla828t3My8laBu7t3MX7nQOK_nQIuwerPnqPtxsW1hePIA_hwgGT11oEtASfBCMsN24PWIkJw2rdVCppAitn2dFADyp2svnNNhQR36Np6GKhcxPxxVFv9d6sqCWJehU44AnP2pERK-pyZKknNRlMz6boL_8EI6uRRiPYFDVlX8MxCV5bDDQF4kNMZUzOZdM4ExmhDQFjyDpX7u2Hf95aMPxXTd5eC51KyqNotKNqPR5BG8W35m07B9Xzt4K0lzMDMzdzQf19ER3ikDbWLjSG2WN5SJ2SkqZ2YTZwihveGYi2OixoDt1MtNL8EfwcjGMiiBkd4rK12fNHPSVk4zFEeQrGFpZ0OpINT5tKMUVkxIRHcHbHm3LP___Az-5eq0v4Nbw8GBf7--O9p7CbRb2QKAkzTZgMJ-e-Wfozs3N824PEfh23dv2HzSQZKQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFLVKEYgN4qkOFDASrMDKjO0Z2wuEgBK1FCoWrZSdGT-mjQQzIUmh_Qh-iK_j2vOIUonuuo2dxDP3da6vfS5CLyBZg9S4SAlVlhNeckNMIRwRjPGqEo4WZdjQ_3JQ7B7xT5N8soH-9ndhwrHK3idGR-0aG_bIRxTSOFYAmBGjqjsW8XVn_Hb2k4QOUqHS2rfTaFVk35__hvRt8WZvB2T9ktLxx8MPu6TrMEBsLtmS5L4SrDRpbh0AAS8rbriSrlA-z00qvbHUMeXBHzjuAawrVRpfeSfKtKpyZxj87jV0XTBAVWBLYiKG_Z1QQeOZ6u7ppEyOFhArw302yP4yiPOCnK3FwtgyYA3nXjyleaFUGyPg-A663UFX_K7Vtbtow9f30I22meX5ffTnENTCExfaBbRUHxhybTdtNxvxceS3Ds4Vl6EJ9KIMqo_r9hg6CdHU4V_TebjPgpcn05oAArYeDySzGOA1DHj8owHd6H02XtGV46aK44sZIOcH6OhKRPEQbdZN7bcQdplIDaT8PLMhu3JGMEk5zKSGS1OyBGX9a9e2Y0IPDTm-61iRZ1K3otIgKh1Fpc8S9Gr4zqzlAbl09vsgzWFm4PCOHzTzY925BG1T7ipvlDWW8dQpKWVhM2pLo7xhhUnQdq8LunMsC70ygwQ9H4bBJYQ6T1n75jTOAdScFTRNkFjTobUFrY_U05NILq6olAChE_S617bVn___gR9dvtZn6CYYq_68d7D_GN2iwQQCN2mxjTaX81P_BHDd0jyNBoTRt6u22H9VUWdr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+conditional+generative+adversarial+network-based+virtual+thin-slice+technique+for+the+morphological+evaluation+of+the+spine&rft.jtitle=Scientific+reports&rft.au=Nakamoto%2C+Atsushi&rft.au=Hori%2C+Masatoshi&rft.au=Onishi%2C+Hiromitsu&rft.au=Ota%2C+Takashi&rft.date=2022-07-16&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft_id=info:doi/10.1038%2Fs41598-022-16637-x&rft_id=info%3Apmid%2F35842451&rft.externalDocID=PMC9288435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon