Three-dimensional conditional generative adversarial network-based virtual thin-slice technique for the morphological evaluation of the spine
Virtual thin-slice (VTS) technique is a generative adversarial network-based algorithm that can generate virtual 1-mm-thick CT images from images of 3–10-mm thickness. We evaluated the performance of VTS technique for assessment of the spine. VTS was applied to 4-mm-thick CT images of 73 patients, a...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 12176 - 8 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.07.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-022-16637-x |
Cover
Summary: | Virtual thin-slice (VTS) technique is a generative adversarial network-based algorithm that can generate virtual 1-mm-thick CT images from images of 3–10-mm thickness. We evaluated the performance of VTS technique for assessment of the spine. VTS was applied to 4-mm-thick CT images of 73 patients, and the visibility of intervertebral spaces was evaluated on the 4-mm-thick and VTS images. The heights of vertebrae measured on sagittal images reconstructed from the 4-mm-thick images and VTS images were compared with those measured on images reconstructed from 1-mm-thick images. Diagnostic performance for the detection of compression fractures was also compared. The intervertebral spaces were significantly more visible on the VTS images than on the 4-mm-thick images (
P
< 0.001). The absolute value of the measured difference in mean vertebral height between the VTS and 1-mm-thick images was smaller than that between the 4-mm-thick and 1-mm-thick images (
P
< 0.01–0.54). The diagnostic performance of the VTS images for detecting compression fracture was significantly lower than that of the 4-mm-thick images for one reader (
P
= 0.02). VTS technique enabled the identification of each vertebral body, and enabled accurate measurement of vertebral height. However, this technique is not suitable for diagnosing compression fractures. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-16637-x |