Efficient plasmon-hot electron conversion in Ag–CsPbBr3 hybrid nanocrystals

Hybrid metal/semiconductor nano-heterostructures with strong exciton-plasmon coupling have been proposed for applications in hot carrier optoelectronic devices. However, the performance of devices based on this concept has been limited by the poor efficiency of plasmon-hot electron conversion at the...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; p. 1163
Main Authors Huang, Xinyu, Li, Hongbo, Zhang, Chunfeng, Tan, Shijing, Chen, Zhangzhang, Chen, Lan, Lu, Zhenda, Wang, Xiaoyong, Xiao, Min
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.03.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hybrid metal/semiconductor nano-heterostructures with strong exciton-plasmon coupling have been proposed for applications in hot carrier optoelectronic devices. However, the performance of devices based on this concept has been limited by the poor efficiency of plasmon-hot electron conversion at the metal/semiconductor interface. Here, we report that the efficiency of interfacial hot excitation transfer can be substantially improved in hybrid metal semiconductor nano-heterostructures consisting of perovskite semiconductors. In Ag–CsPbBr 3 nanocrystals, both the plasmon-induced hot electron and the resonant energy transfer processes can occur on a time scale of less than 100 fs with quantum efficiencies of 50 ± 18% and 15 ± 5%, respectively. The markedly high efficiency of hot electron transfer observed here can be ascribed to the increased metal/semiconductor coupling compared with those in conventional systems. These findings suggest that hybrid architectures of metal and perovskite semiconductors may be excellent candidates to achieve highly efficient plasmon-induced hot carrier devices. Proposed devices exploiting the strong exciton-plasmon coupling are limited by the low efficiency of hot carrier generation. Here, Huang et al. study the efficiencies of different plasmon-hot electron conversion processes in metal/perovskite semiconductor nanocrystals to address this problem.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-09112-1