Oxygen induced promotion of electrochemical reduction of CO2 via co-electrolysis

Harnessing renewable electricity to drive the electrochemical reduction of CO 2 is being intensely studied for sustainable fuel production and as a means for energy storage. Copper is the only monometallic electrocatalyst capable of converting CO 2 to value-added products, e.g., hydrocarbons and oxy...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; p. 3844
Main Authors He, Ming, Li, Chunsong, Zhang, Haochen, Chang, Xiaoxia, Chen, Jingguang G., Goddard, William A., Cheng, Mu-jeng, Xu, Bingjun, Lu, Qi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 31.07.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Harnessing renewable electricity to drive the electrochemical reduction of CO 2 is being intensely studied for sustainable fuel production and as a means for energy storage. Copper is the only monometallic electrocatalyst capable of converting CO 2 to value-added products, e.g., hydrocarbons and oxygenates, but suffers from poor selectivity and mediocre activity. Multiple oxidative treatments have shown improvements in the performance of copper catalysts. However, the fundamental underpinning for such enhancement remains controversial. Here, we combine reactivity, in-situ surface-enhanced Raman spectroscopy, and computational investigations to demonstrate that the presence of surface hydroxyl species by co-electrolysis of CO 2 with low concentrations of O 2 can dramatically enhance the activity of copper catalyzed CO 2 electroreduction. Our results indicate that co-electrolysis of CO 2 with an oxidant is a promising strategy to introduce catalytically active species in electrocatalysis. While the electrochemical conversion of CO 2 to highly reduced products is unique to copper, there are still gaps in understanding copper catalysts’ efficacy. Here, authors find that co-electrolysis of CO 2 with O 2 can enhance copper’s catalytic activities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-17690-8